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Weak Compactness Theorem of R.C. James

Theorem
A Banach space is reflexive if, and only if, each continuous
linear functional attains its supremum on the unit ball

Theorem
A bounded and weakly closed subset K of a Banach space is
weakly compact if, and only if, each continuous linear functional
attains its supremum on K

R.C. James 1964, 1972, J.D. Pryce 1964, S. Simons 1972, G.
Rodé 1981, G. Godefroy 1987, V. Fonf, J. Lindenstrauss, B.
Phelps 2000-03, M. Ruiz, S. Simons 2002, B. Cascales, I.
Namioka, J.O. 2003, O. Kalenda 2007, the boundary problem ...
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Main tool for separable Bnacah spaces

Theorem (Simons)

Let X be a set and (fn)n a uniformly bounded sequence in
`∞(Γ). If Y is a subset of X such that for every sequence of
positive numbers (λn)n, with

∑∞
n=1 λn = 1, there exists y ∈ Y

such that

sup{
∞∑

n=1

λnfn(y) : x ∈ X} =
∞∑

n=1

λnfn(y),

then we have:

sup
y∈Y

lim sup
k→∞

fk (y) = sup
x∈X

lim sup
k→∞

fk (x)
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Weak Compactness through Sup–limsup Theorem

Theorem
Let E be a separable Banach space and K ⊂ E a closed
convex and bounded subset. They are equivalent:

1 K is weakly compact.
2 For every sequence (x∗n ) ⊂ BE∗ we have

sup
k∈K
{lim sup

n→∞
x∗n (k)} = sup

κ∈K
w∗
{lim sup

n→∞
x∗n (κ)}
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Sup–limsup Theorem⇒ Compactness

If K is not weakly compact there is x∗∗0 ∈ K
w∗ ⊂ E∗∗ with

x∗∗0 /∈ E
The Hahn Banach Theorem provide us x∗∗∗ ∈ BE∗∗∗ ∩ E⊥

with x∗∗∗(x∗∗0 ) = α > 0
The separability of E , Ascoli’s and Bipolar Theorems
permit to construct a sequence (x∗n ) ⊂ BE∗ such that:

1 limn→∞ x∗n (x) = 0 for all x ∈ E
2 x∗n (x∗∗0 ) > α/2 for all n ∈ N

Then

0 = sup
k∈K
{ lim

n→∞
x∗n (k)} = sup

k∈K
{lim sup

n→∞
x∗n (k)} =

= sup
v∗∗∈K

w∗
{lim sup

n→∞
x∗n (v∗∗)} ≥ lim sup

n→∞
x∗n (x∗∗0 ) ≥ α/2 > 0
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Weak Compactness through I-generation

Theorem (Fonf and Lindenstrauss)
Let E be a separable Banach space and K ⊂ E a closed
convex and bounded subset. They are equivalent:

1 K is weakly compact.
2 For any covering K ⊂ ∪∞n=1Dn by an increasing sequence

of closed convex subsets Dn ⊂ K , we have

∪∞n Dn
w∗‖·‖

= K
w∗
.

The proof uses Krein Milman and Bishop Phelps theorems
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I-generation⇒Weak Compactness

Take {xn : n ∈ N} norm dense in K

Bm := co({xn : n ≤ m})‖·‖ is finite dimensional closed
compact set
Dm := Bm + δBE∗∗ for δ > 0 fixed
Since K ⊂

⋃∞
m=1 Dm, the I-generation says that

∞⋃
m

Dm
w∗
‖·‖

= K
w∗
.

So (
⋃∞

m Bm) + 2δBE∗∗ ⊃ K
w∗
.

Finally K = K
‖·‖

=
⋂
δ>0(

⋃∞
m Bm) + 2δBE∗∗ = K

w∗
.
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Fonf-Lindenstrauss = Simons

Theorem (Cascales, Fonf, Troyanski and Orihuela, J.F.A.-2010)
Let E be a Banach space, K ⊂ E∗ be w∗−compact convex,
B ⊂ K , TFAE:

1 For any covering B ⊂ ∪∞n=1Dn by an increasing sequence
of convex subsets Dn ⊂ K , we have

∪∞n Dn
w∗‖·‖

= K .

2 supf∈B (lim supk f (xk )) = supg∈K (lim supk g(xk ))
for every sequence {xk} ⊂ BX .

3 supf∈B (lim supk f (xk )) ≥ inf∑λi =1,λi≥0(supg∈K g(
∑
λixi))

for every sequence {xk} ⊂ BX .
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Simons’ inequality for pointwise bounded subsets

Lemma

If {fn}n≥1 is a pointwise bounded sequence in RX and ε > 0,
then for every m ≥ 1 there exists gm ∈ coσp{fn : n ≥ m} such
that

SX

(
m−1∑
n=1

gn

2n

)
≤
(

1− 1
2m−1

)
SX

( ∞∑
n=1

gn

2n

)
+

ε

2m−1 .
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Simons’ inequality for pointwise bounded subsets

inductively, for each m ≥ 1, gm ∈ coσp{fn : n ≥ m}
satisfying SX

(∑m−1
n=1

gn
2n + gm

2m−1

)
≤

infg∈coσp{fn : n≥m} SX

(∑m−1
n=1

gn
2n + g

2m−1

)
+ 2ε

4m .

The existence of such gm follows from the easy fact that
infg∈coσp{fn : n≥m} SX (g) > −∞, according with the
pointwise boundeness of our sequence {fn}n≥1.
Since 2m−1∑∞

n=m
gn
2n ∈ coσp{fn : n ≥ m}, then

SX

((∑m−1
n=1

gn
2n

)
+ gm

2m−1

)
≤ SX

(∑∞
n=1

gn
2n

)
+ 2ε

4m .
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Simons’ inequality for pointwise bounded subsets

From the equality∑m−1
n=1

gn
2n =

∑m−1
k=1

1
2m−k

((∑k−1
n=1

gn
2n

)
+ gk

2k−1

)
,

SX

(
m−1∑
n=1

gn

2n

)
≤

m−1∑
k=1

1
2m−k SX

((
k−1∑
n=1

gn

2n

)
+

gk

2k−1

)

≤
m−1∑
k=1

1
2m−k

(
SX

( ∞∑
n=1

gn

2n

)
+

2ε
4k

)

=

(
1− 1

2m−1

)
SX

( ∞∑
n=1

gn

2n

)
+

(
1− 1

2m−1

)
2ε
2m

≤
(

1− 1
2m−1

)
SX

( ∞∑
n=1

gn

2n

)
+

ε

2m−1 ,
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Simons’ inequality for pointwise bounded subsets

Theorem (Simons’ inequality in RX)

Let X be a nonempty set, let {fn}n≥1 be a pointwise bounded
sequence in RX and let Y be a subset of X such that
for every g ∈ coσp{fn : n ≥ 1} there exists

y ∈ Y with g(y) = SX (g).

Then

inf
g∈coσp{fn : n≥1}

SX (g) ≤ SY

(
lim sup

n
fn

)
.

J. Orihuela



Simons’ inequality for pointwise bounded subsets

Theorem (Simons’ inequality in RX)

Let X be a nonempty set, let {fn}n≥1 be a pointwise bounded
sequence in RX and let Y be a subset of X such that
for every g ∈ coσp{fn : n ≥ 1} there exists

y ∈ Y with g(y) = SX (g).

Then

inf
g∈coσp{fn : n≥1}

SX (g) ≤ SY

(
lim sup

n
fn

)
.

J. Orihuela



Proof of pointwise bounded Simons’ inequality

For ε > 0 we are going to find y ∈ Y and
g ∈ coσp{fn : n ≥ 1} such that SX (g)− ε ≤ lim supn fn(y).

Fix ε > 0. The former Lemma provides us with a sequence
{gm}m≥1 in RX such that for every m ≥ 1,
gm ∈ coσp{fn : n ≥ m} and

SX

(
m−1∑
n=1

gn

2n

)
≤
(

1− 1
2m−1

)
SX

( ∞∑
n=1

gn

2n

)
+

ε

2m−1 . (1)

g :=
∑∞

n=1
gn
2n ∈ coσp{fn : n ≥ 1}, then there exists y ∈ Y

with
g(y) = SX (g), (2)
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Proof of pointwise bounded Simons’ inequality II

So given m ≥ 1, it follows from (1) and (2):(
1− 1

2m−1

)
g(y) +

ε

2m−1 ≥ SX

(
m−1∑
n=1

gn

2n

)

≥
m−1∑
n=1

gn(y)

2n = g(y)−
∞∑

n=m

gn(y)

2n .

Therefore,

inf
m≥1

2m−1
∞∑

n=m

gn(y)

2n ≥ g(y)− ε. (3)

Since for every m ≥ 1 we have 2m−1∑∞
n=m 2n = 1, we

conclude that

sup
n≥m

fn(y) ≥ 2m−1
∞∑

n=m

gn(y)

2n .
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Proof of pointwise bounded Simons’ inequality III

Now, with this last inequality in mind:

sup
n≥m

fn(y) ≥ 2m−1
∞∑

n=m

gn(y)

2n .

together with (2) and (3) we arrive at

lim sup
n

fn(y) = inf
m≥1

sup
n≥m

fn(y)

≥ inf
m≥1

2m−1
∞∑

n=m

gn(y)

2n

≥ g(y)− ε
= SX (g)− ε,

.
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Sup-limsup Theorem

Corollary (Simons’ sup-limsup theorem in RX)

Let X be a nonempty set, let {fn}n≥1 be a pointwise bounded
sequence in RX and let Y be a subset of X such that
for every g ∈ coσp{fn : n ≥ 1} there exits

y ∈ Y with g(y) = SX (g).

Then

SX

(
lim sup

n
fn

)
= SY

(
lim sup

n
fn

)
.
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A proof for Sup-limsup theorem

Let us assume, arguing by reductio ad absurdum, that
there exists x0 ∈ X such that

lim sup
n

fn(x0) > SY

(
lim sup

n
fn

)
.

We assume then, passing to a subsequence if necessary,
that

inf
n≥1

fn(x0) > SY

(
lim sup

n
fn

)
.

In particular,

inf
g∈coσp{fn : n≥1}

g(x0) > SY

(
lim sup

n
fn

)
,
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A proof for Sup-limsup theorem

and then, by applying Simons’ inequality, we arrive at

SY

(
lim sup

n
fn

)
≥ inf

g∈coσp{fn : n≥1}
SX (g)

≥ inf
g∈coσp{fn : n≥1}

g(x0)

> SY

(
lim sup

n
fn

)
,

a contradiction.
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Unbounded Rainwater-Simons’ theorem

Theorem (Unbounded Rainwater–Simons’ theorem)

If E is a Banach space, C is a subset of E∗, B is a nonempty
subset of C and {xn}n≥1 is a bounded sequence in E such that
for every x ∈ coσ{xn : n ≥ 1} there exists

b∗ ∈ B with b∗(x) = SC(x),

then

SB

(
lim sup

n
xn

)
= SC

(
lim sup

n
xn

)
.

As a consequence

σ(E ,B)- lim
n

xn = 0 ⇒ σ(E ,C)- lim
n

xn = 0.

whenever xn(C) ≥ 0 for every n ∈ N, or C = −C.
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Fonf-Lindenstrauss I-formula

Theorem (Fonf–Lindenstrauss’ theorem)

Let E be a Banach space, B a bounded subset of E∗ such that
for every x ∈ E there exists some b∗0 ∈ B satisfying
b∗0(x) = supb∗∈B b∗(x). Then we have that, for every covering
B ⊂

⋃∞
n=1 Dn by an increasing sequence of w∗-closed convex

subsets Dn ⊂ co(B)
w∗

, the following equality holds true

∪∞n=1Dn
‖·‖

= co(B)
w∗
. (4)
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A proof for the I-formula

If z∗0 ∈ co(B)
w∗

such that z∗0 6∈ ∪∞n=1Dn
‖·‖

. Fix δ > 0 such
that

B[z∗0 , δ] ∩ Dn = ∅, for every n ≥ 1. (5)

The separation theorem in (E∗,w∗), when applied to the
w∗-compact set B[0, δ] and the w∗-closed set Dn − z∗0 ,
provides us with a norm-one xn ∈ E and αn ∈ R such that

inf
v∗∈B[0,δ]

xn(v∗) > αn > sup
y∗∈Dn

xn(y∗)− xn(z∗0).

But
−δ = inf

v∗∈B[0,δ]
xn(v∗),

and consequently the sequence {xn}n≥1 in BE satisfies

xn(z∗0)− δ > xn(y∗) (6)

for each n ≥ 1 and y∗ ∈ Dn.
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A proof for the I-formula II

Fix a w∗-cluster point x∗∗ ∈ BE∗∗ of the sequence {xn}n≥1
and let {xnk}k≥1 be a subsequence of {xn}n≥1 such that
x∗∗(z∗0) = limk xnk (z∗0).
We can and do assume that for every k ≥ 1,

xnk (z∗0) > x∗∗(z∗0)− δ

2
. (7)

Since B ⊂ ∪∞n=1Dn and {Dn}n≥1 is an increasing sequence
of sets, given b∗ ∈ B there exists k0 ≥ 1 such that b∗ ∈ Dnk

for each k ≥ k0.
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A proof for the I-formula III

Now inequality (6) yields

x∗∗(z∗0)− δ ≥ lim sup
k

xnk (b∗), for every b∗ ∈ B, (8)

and, on the other hand, inequality (7) implies that

w(z∗0) ≥ x∗∗(z∗0)− δ
2
, for every w ∈ coσ{xnk : k ≥ 1}. (9)

Now Simons’ inequality can be applied to the sequence
{xnk}k≥1, to deduce

x∗∗(z∗0)− δ
(8)
≥ sup

b∗∈B
lim sup

k
xnk (b∗)≥

inf
{

sup{w(z∗) : z∗ ∈ co(B)
w∗
,w ∈ coσ{xnk : k ∈ N}}

}
≥ inf

{
w(z∗0) : w ∈ coσ{xnk : k ∈ N}

}
(9)
≥ x∗∗(z∗0)− δ

2
.

From the inequalities above 0 ≥ δ, a contradiction.
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Some questions

Cascales, Fonf, Troyanski and myself (JFA 2012) proved the
equivalence between Simons’ inequality, the sup-limsup
theorem, and the (I)-formula of Fonf and Lindenstrauss in the
bounded case. We ask the following exercise:

Question
We have seen the implications:
Simons’ inequality→ Sup-limsup theorem
Simons’ inequality→ I- formula, and both of them give us the
proof of James theorem for separable Banach spaces. Could
you complete the proof of the equivalence of the three tools?

In the unbounded case we propose the following question:

Question
Are the unbounded versions of Simons’ inequality and the
unbounded sup-limsup theorem equivalent to some kind of
I-formula for the unbounded case?
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Our answer

Theorem (B. Cascales, J. Orihuela and A. Pérez)

Let D ⊂ E∗ be a weak∗-compact convex set with 0 /∈ D, and let
C ⊂ E∗ be a weak∗-closed convex set such that every x ∈ LD,
where LD = {x ∈ E : x(D) < 0}, has finite supremum on C.
Given B ⊂ C the following assertions are equivalent:

(i) For every B ⊆
⋃∞

n=1 Kn with an increasing sequence of
weak∗-compact convex subsets Kn ⊂ C we have that
C ⊂

⋃∞
n=1 Kn + ΛD

‖·‖
where ΛD is the cone generated by D.

(ii) For every bounded sequence (xn)n∈N in LD:

sup
b∗∈B

(lim sup
n
〈b∗, xn〉) = sup

c∗∈C
(lim sup

n
〈c∗, xn〉).

(iii) For every bounded sequence (xn)n∈N in LD:

sup
b∗∈B

(lim sup
n
〈b∗, xn〉) ≥ inf

x∈coσ {xn : n≥1}
sup
c∗∈C

〈c∗, x〉.
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Going to James’ theorem for arbitrary Banach spaces

Lemma

Suppose that E is a Banach space, {xn}n≥1 is a bounded
sequence in E and x∗∗0 in E∗∗ is a w∗-cluster point of {xn}n≥1
with d(x∗∗0 ,E) > 0. Then for every α with d(x∗∗0 ,E) > α > 0
there exists a sequence {x∗n}n≥1 in BE∗ such that

〈x∗n , x∗∗0 〉 > α (10)

whenever n ≥ 1, and
〈x∗0 , x∗∗0 〉 = 0 (11)

for any x∗0 ∈ L{x∗n}.

We are denoting with L{x∗n} the non void set of w∗-cluster
points of the sequence (x∗n )
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A proof for the lemma

The Hahn–Banach theorem applies to provide us with
x∗∗∗ ∈ BE∗∗∗ satisfying x∗∗∗|E = 0 and x∗∗∗(x∗∗0 ) = d(x∗∗0 ,E).
For every n ≥ 1 the set
Vn :=

{
y∗∗∗ ∈ E∗∗∗ : y∗∗∗(x∗∗0 ) > α, |y∗∗∗(xi)| ≤ 1

n , i ≤ n
}

is
a w∗-open neighborhood of x∗∗∗, and therefore, by
Goldstein’s theorem, we can pick up x∗n ∈ BE∗ ∩ Vn.
The sequence {x∗n}n≥1 clearly satisfies
limn〈x∗n , xp〉 = 0, for all p ∈ N, and for each n ≥ 1,
〈x∗n , x∗∗0 〉 > α.

Fix an arbitrary x∗0 ∈ L{x∗n}. For every p ≥ 1 we have that
〈x∗0 , xp〉 = 0, and thus 〈x∗0 , x∗∗0 〉 = 0, because

x∗∗0 ∈ {xp : p = 1,2, · · · }w
∗
.
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James’ theorem for spaces with w∗-sequential
compact dual ball

Theorem

Let E be a Banach space with a w∗-convex block compact dual
unit ball. If a bounded subset A of E is not weakly relatively
compact, then there exists a sequence of linear functionals
{y∗n}n≥1 ⊂ BE∗ with a w∗-limit point y∗0 , and some
g∗ ∈ coσ{y∗n : n ≥ 1}, such that g∗ − y∗0 doest not attain its
supremum on A.
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A first proof

The Eberlein–Šmulian theorem provide us a sequence
{xn}n≥1 in A and a w∗-cluster point x∗∗0 ∈ E∗∗ \ E of it.
Former Lemma applies to provide us with a sequence
{x∗n}n≥1 in BE∗ and α > 0 satisfying (10) and (11).
Let {y∗n}n≥1 be a convex-block sequence of {x∗n}n≥1 and
let y∗0 ∈ BE∗ such that w∗- limn y∗n = y∗0 . It is clear that (10)
and (11) are valid when replacing {x∗n}n≥1 and x∗0 with
{y∗n}n≥1 and y∗0 , respectively.
Then

S
A

w∗

(
lim sup

n
(y∗n − y∗0 )

)
≥ lim sup

n
(y∗n − y∗0 )(x∗∗0 )

≥ α > 0

= SA

(
lim sup

n
(y∗n − y∗0 )

)
,

so in view of the Suplim-Sup theorem of Simons, there
exists g∗ ∈ coσ{y∗n : n ≥ 1} such that g∗ − y∗0 does not
attain its supremum on A, as announced.
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A new measure of non-weak compactness

Theorem

Let A be a bounded subset of a Banach space E. Then A is
weakly relatively compact if, and only if, for every bounded
sequence {x∗n}n≥1 in E∗ we have

dist‖·‖A
(L{x∗n}, co{x∗n : n ≥ 1}) = 0. (12)

J. Orihuela



We first prove that if A is weakly relatively compact then
equality (12) holds for any bounded sequence {x∗n}n≥1 in
E∗.
Since co(A)

‖·‖
is weakly compact by the Krein–Šmulian

theorem, the seminorm ‖ · ‖A = ‖ · ‖
co(A)

‖·‖ is continuous for

the Mackey topology τ(E∗,E).
Hence we have the inclussions
L{x∗n} ⊂ co{x∗n : n ≥ 1}w

∗
= co{x∗n : n ≥ 1}τ(E∗,E) ⊂

co{x∗n : n ≥ 1}‖·‖A
, that clearly explain the validity of (12).
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The reverse impliction

Let us assume that A is not relatively weakly compact in E .
Then the Eberlein–Šmulian theorem guarantees the
existence of a sequence {xn}n≥1 in A with a w∗-cluster
point x∗∗0 ∈ E∗∗ \ E .
If d(x∗∗0 ,E) > α > 0, an appeal to our Lemma provides us
with a sequence {x∗n}n≥1 in BE∗ satisfying

〈x∗n , x∗∗0 〉 > α whenever n ≥ 1

〈x∗0 , x∗∗0 〉 = 0 for any x∗0 ∈ L{x∗n}

Therefore we have that

‖
n∑

i=1

λix∗ni
− x∗0‖A ≥

〈
n∑

i=1

λix∗ni
− x∗0 , x

∗∗
0

〉
> α

for any convex combination
∑n

i=1 λix∗ni
,

dist‖·‖A
(L{x∗n}, co{x∗n : n ≥ 1}) ≥ α > 0, (13)
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Connection with Pryce’s arguments for the general
case

Theorem

Let E be a Banach space, A a bounded subset of E with
A = −A, {x∗n}n≥1 a bounded sequence in the dual space E∗,
and D its norm-closed linear span in E∗. Then there exists a
subsequence {x∗nk

}k≥1 of {x∗n}n≥1 such that

SA

(
x∗ − lim inf

k
x∗nk

)
= SA

(
x∗ − lim sup

k
x∗nk

)
=

= dist‖·‖A
(x∗,L{x∗nk

})

for all x∗ ∈ D.
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Connection with Pryce’ s arguments for the general
case
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Theorem (James-Pryce undetermined function technique)

Let X be a nonempty set, {hj}j≥1 a bounded sequence in
`∞(X ), and δ > 0 such that

SX

(
h − lim sup

j
hj

)
= SX

(
h − lim inf

j
hj

)
≥ δ,

whenever h ∈ coσ{hj : j ≥ 1}. Then there exists a sequence
{gi}i≥1 in `∞(X ) with

gi ∈ coσ{hj : j ≥ i}, for all i ≥ 1,

and there exists g0 ∈ coσ{gi : i ≥ 1} such that for all g ∈ `∞(X )
with

lim inf
i

gi ≤ g ≤ lim sup
i

gi on X ,

the function g0 − g doest not attain its supremum on X .
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Theorem (James)

Let A be a nonempty bounded subset of a Banach space E
which is not weakly relatively compact. Then there exists a
sequence {g∗n}n≥1 in BE∗ and some g∗0 ∈ coσ{g∗n : n ≥ 1} such
that, for every h ∈ `∞(A) with

lim inf
n

g∗n ≤ h ≤ lim sup
n

g∗n on A,

we have that g∗0 − h does not attain its supremum on A.
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Without loss of generality we can assume that A is convex
and that A = −A.
Our Theorem above gives us a sequence {x∗n}n≥1 in BE∗

such that dist‖·‖A
(L{x∗n}, co{x∗n : n ≥ 1}) > 0.

By the former theorem there exists a subsequence
{x∗nk
}k≥1 of {x∗n}n≥1 that verifies the hypothesis there.

So we find a sequence {g∗n}n≥1 with g∗n ∈ coσ{x∗nk
: k ≥ n},

for every n ∈ N, and g∗0 ∈ coσ{g∗n : n ≥ 1} such that g∗0 − h
doest not attain its supremum on A, where h is any
function in `∞(A) with lim infn g∗n ≤ h ≤ lim supn g∗n on A.
In particulas for every cluster g∗ ∈ L{g∗n} we see that
g∗0 − g∗ doest not attain its supremum on A
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The Theorem of James as a minimization problem

Let us fix a Banach space E with dual E∗

K is a closed convex set in the Banach space E
ιK (x) = 0 if x ∈ K and +∞ otherwise
x∗ ∈ E∗ attains its supremum on K at
x0 ∈ K ⇔ ιk (y)− ιK (x0) ≥ x∗(y − x0) for all y ∈ E
The minimization problem

min{ιK (·)− x∗(·)}

on E for every x∗ ∈ E∗ has always solution if and only if the
set K is weakly compact
When the minimization problem

min{α(·) + x∗(·)}

on E has solution for all x∗ ∈ E∗ and a fixed proper
function α : E → (−∞,+∞]?
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Minimizing {α(x) + x∗(x) : x ∈ E}
Birthday Theorem for Walter Schachermayer 2010

Theorem (J. Orihuela and M. Ruiz )

Let E be a Banach space, α : E → (−∞,+∞] proper, (lower
semicontinuous) function with

lim
‖x‖→∞

α(x)

‖x‖
= +∞

Suppose that there is c ∈ R such that the level set {α ≤ c} fails
to be (relatively) weakly compact. Then there is x∗ ∈ E∗ such
that,the infimum

inf
x∈E
{〈x , x∗〉+ α(x)}

is not attained.
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Maximizing {x∗(x)− α(x) : x ∈ E}

Theorem (J. Orihuela and M. Ruiz. – J. Saint Raymond)

Let E be a Banach space, α : E → (−∞,+∞] proper, lower
semicontinuous function, then we have:

If ∂α(E) = E∗ then the level sets {α ≤ c} are weakly
compact for all c ∈ R.
If α has weakly compact level sets and the
Fenchel-Legendre conjugate α∗ is finite, i.e.
sup{x∗(x)− α(x) : x ∈ E} < +∞ for all x∗ ∈ E∗, then
∂α(E) = E∗

J. Orihuela



Minimizing {α(Y ) + E(X · Y ) : Y ∈ L1}

Theorem (Jouini-Schachermayer-Touzi)

Let U : L∞(Ω,F ,P)→ R be a monetary utility function with the
Fatou property and U∗ : L∞(Ω,F ,P)∗ → [0,∞] its
Fenchel-Legendre transform. They are equivalent:

1 {U∗ ≤ c} is σ(L1,L∞)-compact subset for all c ∈ R
2 For every X ∈ L∞ the infimum in the equality

U(X ) = inf
Y∈L1
{U∗(Y ) + E[XY ]},

is attained
3 For every uniformly bounded sequence (Xn) tending a.s. to

X we have
lim

n→∞
U(Xn) = U(X ).

J. Orihuela



Order Continuity of Risk Measures

Theorem (J. Orihuela and M. Ruiz- Lebesgue Risk Measures
on Orlicz spaces)

Let ρ(X ) = supY∈MΨ∗{EP[−XY ]− α(Y )} be a finite convex risk
measure on LΨ with α : (LΨ(Ω,F ,P)∗ → (−∞,+∞] a penalty
function w∗-lower semicontinuos. T.F.A.E.:

(i) For all c ∈ R, α−1((−∞, c]) is a relatively weakly compact
subset of MΨ∗(Ω,F ,P).

(ii) For every X ∈ LΨ(Ω,F ,P), the supremum in the equality

ρ(X ) = sup
Y∈MΨ∗

{EP[−XY ]− α(Y )}

is attained.
(iii) ρ is sequentially order continuous

J. Orihuela



Applications to nonlinear variational problems

Theorem (Reflexivity frame)
Let E be a real Banach space and

α : E −→ R ∪ {+∞}

a a function such that dom(α) has nonempty interior and for all
x∗ ∈ E∗ there exists x0 ∈ E with

α(x0) + x∗(x0) = inf
x∈E
{α(x) + x∗(x)}

Then E is reflexive.

J. Orihuela



[∂α(E) = E∗]⇒ E = E∗∗

Fix an open ball B ⊆ dom(α)

B =
⋃+∞

p=1 B ∩ α−1((−∞,p])
σ(E ,E∗)

Baire Category Theorem⇒ there is q ∈ N :

B ∩ α−1((−∞,q])
σ(E ,E∗)

has non void interior relative to B
There is G open in E such that

∅ 6= B ∩G ⊂ B ∩ α−1((−∞,q])
σ(E ,E∗)

α−1((− inf,q])
σ(E ,E∗)

weakly compact⇒ G contains an
open relatively weakly compact ball
BE is weakly compact
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F. Delbaen problem

Let C be a convex, bounded and closed, but not weakly
compact subset of the Banach space E with 0 /∈ C. The
following problem has been posed by F. Delbaen motivated by
risk measures theory:

Question

Let E = L1(Ω,F ,P). Is it possible to find a linear functional not
attaining its minimum on C and that stays strictly positive on C?

Theorem (Birthday Theorem for A. Defant 2013)
Let E be a separable Banach space. Let C be a closed, convex
and bounded subset of E \ {0}, D ⊂ C a relatively weakly
compact set of directions such that, for every x∗ ∈ E∗, we have
that inf{x∗(c) : c ∈ C} is attained at some point of C whenever
x∗(d) > 0 for every d ∈ D. Then C is weakly compact.

J. Orihuela
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Solution to Delbaen’s question

Theorem (Birthday Theorem for Pepe Bonet 2015)

Let H be a uniformly integrable subset of L1(Ω,F ,P) with
0 /∈ co(H). Suppose that A is a subset of L1(Ω,F ,P) such that
every Y ∈ L∞(Ω,F ,P) with inf{E[X · Y ] : X ∈ H} > 0 satisfies
that inf {E[X · Z ] : Z ∈ A} is attained. Then A is uniformly
integrable.

Theorem (B. Cascales, J. Orihuela and A. Pérez – W. Moors)
Let E be a Banach space. Let A and B be bounded, closed and
convex sets with distance d(A,B) > 0. If every x∗ ∈ E∗ with

sup(x∗,B) < inf(x∗,A)

attains its infimum on A and its supremum on B, then A and B
are both weakly compact.
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Theorem (Birthday Theorem for Domingo 2018)
Let E be a Banach space and D be a weakly compact convex
subset of E with 0 /∈ D. If A is a bounded subset of E such that
every x∗ ∈ E∗ with x∗(D) > 0 attains its supremum on A, then
A is weakly relatively compact.

J. Orihuela



The tool

Theorem (One-sided undefined function technique)
Let A be a convex bounded not relatively weakly compact
subset of a Banach space E. Let us fix a convex weakly
compact subset D of E which does not contain the origin. Then
there is a sequence {x∗n}n≥1 in BE∗ and g∗0 ∈ coσ{x∗n : n ≥ 1}
such that for all h ∈ `∞(A) satisfying that for all a ∈ A,

lim inf
n≥1

x∗n (a) ≤ h(a) ≤ lim sup
n≥1

x∗n (a),

we have that

g∗0 − h does not attain its supremum on A.

and (g∗0 − h)(d) > 0 for every d ∈ D.
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Theorem (Second Birthday Theorem for Domingo 2018)

Let A be a convex bounded subset of a Banach space E. Let
us fix a convex weakly compact subset D of E which does not
contain the origin, a functional z∗0 ∈ E∗ and ε > 0. Then there is
a bounded sequence {x∗n}n≥1 in E∗ and g∗0 ∈ coσ{x∗n : n ≥ 1}
such that for all h ∈ `∞(A) satisfying that for all a ∈ A,

lim inf
n≥1

x∗n (a) ≤ h(a) ≤ lim sup
n≥1

x∗n (a),

we have that

z∗0 + h − g∗0 does not attain its infimum on A.

and
|h(d)− g∗0(d)| < ε

for every d ∈ D.
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Theorem (Second Birthday Theorem for Domingo 2018)
Let A be a convex bounded and not relatively compact subset
of a Banach space E. Let us fix a convex weakly compact
subset D of E, a functional z∗0 ∈ E∗ and ε > 0. Then there is a
linear form x∗0 ∈ BpD (z∗0 , ε), i.e.

|x∗0 (d)− z∗0(d)| < ε

for all d ∈ D,
which does not attain its infimum on A.
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Reflexivity consequences

Theorem
A Banach space E is reflexive if, and only if, the set of norm
attaining linear functionals has non empty interior for the
Mackey topology τ(E∗,E) in E∗, (the topology of uniforme
convergence on weakly compact convex subsets of E.)

Theorem
A Banach space E is not reflexive if, and only if, the set of norm
non-attaining linear functionals is dense in E∗ for the Mackey
topology τ(E∗,E), (the topology of uniforme convergence on
weakly compact convex subsets of E.)
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One-sided plus Mackey’s constraints Case

Theorem (Joint work with Freddy Delbaen)
Let A be a convex bounded subset of a Banach space E which
is assumed non to be relatively weakly compact. Let us fix an
absolutely convex and weakly compact subset D of E∗∗ and a
functional z∗0 ∈ E∗, with z∗0(A) > 0, and ε > 0
Then there are linear forms z∗ ∈ E∗ such that

z∗0 + z∗ does not attain its infimum on A,

|z∗(d)| < ε

for every d ∈ D and

(z∗0 + z∗)(A) > 0.
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Tool: the undetermined function technique again

Theorem (F. Delbaen and J. Orihuela)
Let A be a closed, convex and bounded subset of a Banach
space E which is not weakly compact and it doest not contains
the origin. Let us fix a convex and weakly compact subset D of
E, a functional z∗0 ∈ E∗ with z∗0(A) > 0 and ε > 0.
Then there is a bounded sequence {x∗n}n≥1 in E∗ and
g∗0 ∈ coσ{x∗n : n ≥ 1} such that for every σ(E∗,E)-cluster point
h∗ ∈ E∗ of the sequence {x∗n}n≥1 we have that

z∗0 + h∗ − g∗0 does not attain its infimum on A,

|h∗(w)− g∗0(d)| < ε

for every d ∈ D, and

(z∗0 + h∗ − g∗0)(A) > 0.
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The unbounded case

Theorem (F. Delbaen and J. Orihuela)
Let C be a proper closed cone in a Banach space E which is
assumed non to be σ(E∗∗,E∗)-closed in E∗∗. Let us fix a
convex and weakly compact subset D of E, a functional
z∗0 ∈ E∗ with z∗0(C) ≤ 0, and ε > 0.
Then there is a linear form z∗ ∈ E∗ such that

x → 〈z∗0 + z∗, x〉 does not attain its supremum on C,

sup
d∈D
|z∗(d)| < ε,

and

(z∗0 + z∗)(C) ≤ 0.

J. Orihuela



Maximizing {x∗(x)− α(x) : x ∈ E}

Theorem (F. Delbaen and J. Orihuela)

Let E be a Banach space, α : E → (−∞,+∞] be a proper,
lower semicontinuous function.
If ∂α(E) has non empty interior in E∗ for the Mackey topology
τ(E∗,E), then the level sets {α ≤ c} are weakly compact for all
c ∈ R.
Moreover, if the Fenchel-Legendre conjugate α∗ is finite, i.e.
sup{x∗(x)− α(x) : x ∈ E} < +∞ for all x∗ ∈ E∗, then
∂α(E) = E∗
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