Seminar UV-UPV. A quantitative no-programming theorem. Summary of terms and standard results.

Aleksander M. Kubicki

I. QUANTUM MODELS

We consider $\mathcal{H}, \mathcal{H}', \mathcal{K}$ finite dimensional complex Hilbert spaces, denoting $\mathcal{H} \simeq \mathbb{C}^d$, $\mathcal{H}' \simeq \mathbb{C}^d'$, $\mathcal{K} \simeq \mathbb{C}^k$. We will usually consider $\{e_i\}_{i=1}^d$ as an orthonormal basis on \mathcal{H} . Then, $\mathcal{L}(\mathcal{H})$ is the vector space of linear operators on \mathcal{H} .

Definition 1. We refer to a state as a linear operator $\rho \in \mathcal{L}(\mathcal{H})$ satisfying the conditions

- 1. ρ is positive,
- 2. ρ has trace one.

Definition 2. A quantum channel (or evolution) is a linear map

$$\mathcal{E}: \mathcal{L}(\mathcal{H}) \longrightarrow \mathcal{L}(\mathcal{H}'),$$

which is completely positive and trace preserving. We denote by $\text{CPTP}(\mathcal{H}, \mathcal{H}')$ the set of these maps. An important class of quantum channels are unitary channels, which acts by unitary conjugation

$$\begin{aligned} \mathcal{E} : \ \mathcal{L}(\mathcal{H}) & \longrightarrow \ \mathcal{L}(\mathcal{H}) \\ \rho & \mapsto \ U \ \rho \ U^{\dagger}, \end{aligned}$$

where $U \in \mathcal{L}(\mathcal{H})$ is a unitary operator.

Theorem 1 (Stinespring dilation). Let $\mathcal{E} : \mathcal{L}(\mathcal{H}) \longrightarrow \mathcal{L}(\mathcal{H}')$ be a completely positive and trace preserving linear map. Then, there exist $k \in \mathbb{N}$, a unitary $U \in \mathcal{L}(\mathcal{H} \otimes \mathbb{C}^k)$ and a state $\phi \in \mathcal{L}(\mathcal{H})$ such that

$$\mathcal{E}(\rho) = \operatorname{Tr}_{\mathbb{C}^k} U\left(\rho \otimes \phi\right) U^{\dagger}.$$

Definition 3. A Positive Operator Valued Measurement, POVM, is a family of operators $\{E_j\}_{j=1}^m, E_j \in \mathcal{L}(\mathcal{H}), which$

- 1. are positive
- 2. and decompose the identity, $\mathrm{Id}_{\mathcal{H}} = \sum_{j=1}^{m} E_j$.

Given a state ρ , the probability that the outcome of the POVM is j is given by $\operatorname{Tr}(E_j \rho)$.

II. STATE DISTINGUISHABILITY

Task: a state is received under the hypothesis that it is ρ_1 or ρ_2 , with probability 1/2 each. How well can we distinguish between both possibilities?

Definition 4. Given a dichotomic POVM $\mathcal{M} = \{E_1, E_2\}$, we define the probability of distinguishing the states ρ_1 and ρ_2 using \mathcal{M} as:

$$p_{dist}^{\mathcal{M}}(\rho_1, \rho_2) := \frac{1}{2} \operatorname{Tr}(E_1 \cdot \rho_1) + \frac{1}{2} \operatorname{Tr}(E_2 \cdot \rho_2).$$

Therefore, the optimal probability of distinguishing the states ρ_1 and ρ_2 is the optimization of the former one over any possible POVM:

$$p_{dist}^*(\rho_1, \rho_2) = \sup_{\substack{\mathcal{M} = \{E_1, \mathrm{Id} - E_1\}\\ 0 \le E_1 \le \mathrm{Id}}} p_{dist}^{\mathcal{M}}(\rho_1, \rho_2).$$

Theorem 2 (Helström).

$$p_{dist}^* = \frac{1}{2} + \frac{1}{4} \|\rho_1 - \rho_2\|_1.$$

Above, for $T \in \mathcal{L}(\mathcal{H})$, $||T||_1$ is the *trace norm* of T, defined as the ℓ_1 norm of the singular values of T. We denote the space of operators on \mathcal{H} endowed with the trace norm as $\mathcal{S}_1(\mathcal{H})$.

III. CHANNEL DISTINGUISHABILITY

We promote the former discussion to the level of *evolutions*.

Task: a box is received under the hypothesis that on a state under our choice, it applies a quantum channel \mathcal{E}_1 or \mathcal{E}_2 , with probability 1/2 each. How well can we distinguish between both possibilities?

Definition 5. Given a state $\rho \in \mathcal{L}(\mathcal{H} \otimes \mathcal{K})$, and a dichotomic POVM $\mathcal{M} = \{E_1, E_2\}$, where $E_i \in \mathcal{L}(\mathcal{H} \otimes \mathcal{K})$, we define the probability of distinguishing the channels \mathcal{E}_1 and \mathcal{E}_2 using ρ and \mathcal{M} as:

$$q_{dist}^{\rho,\mathcal{M}}(\rho_1,\rho_2) := \frac{1}{2} \operatorname{Tr} \left((\mathcal{E}_1 \otimes \operatorname{Id}_{\mathcal{K}}) \cdot \rho \right) + \frac{1}{2} \operatorname{Tr} \left((\mathcal{E}_2 \otimes \operatorname{Id}_{\mathcal{K}}) \cdot \rho_2 \right)$$

Therefore, the optimal probability of distinguishing the channels \mathcal{E}_1 and \mathcal{E}_2 is:

$$p_{dist}^{*}(\rho_{1},\rho_{2}) = \sup_{\mathcal{K}} \sup_{\substack{\mathcal{M} = \{E_{1}, \mathrm{Id} - E_{1}\}: 0 \leq E_{1} \leq \mathrm{Id} \\ \rho \in \mathcal{D}(\mathcal{H} \otimes \mathcal{K})}} q_{dist}^{\rho,\mathcal{M}}(\mathcal{E}_{1},\mathcal{E}_{2}),$$

where \mathcal{K} in the first supremum is a finite dimensional Hilbert space.

Theorem 3.

$$q_{dist}^* = \frac{1}{2} + \frac{1}{4} \|\mathcal{E}_1 - \mathcal{E}_2\|_\diamond.$$

Above, for any $\mathcal{T} : \mathcal{L}(\mathcal{H}) \longrightarrow \mathcal{L}(\mathcal{H}), \|\mathcal{T}\|_{\diamond}$ is the *diamond norm* defined as:

$$\|\mathcal{T}\|_{\diamond} := \sup_{\mathcal{K}} \left\|\mathcal{T}: \mathcal{S}_1(\mathcal{H}\otimes\mathcal{K}) \longrightarrow \mathcal{S}_1(\mathcal{H}\otimes\mathcal{K}) \right\|$$

where \mathcal{K} is restricted to be a finite dimensional Hilbert space.

IV. UNIVERSAL PROGRAMMABLE QUANTUM PROCESSORS

Definition 6. A quantum channel $\mathcal{P} \in \text{CPTP}(\mathcal{H} \otimes \mathcal{H}_M)$ is a d-dimensional Universal Programmable Quantum Processor, UPQP_d , if dim $\mathcal{H} = d$ and for every $U \in \mathcal{U}(\mathcal{H})$ there exists a unit vector $|\phi_U\rangle \in \mathcal{H}_M$ such that:

$$\operatorname{Tr}_{\mathcal{H}_{\mathcal{M}}}\left[\mathcal{P}\left(\rho\otimes|\phi_{U}\rangle\langle\phi_{U}|\right)\right] = U\rho U^{\dagger}, \quad for \; every \; \; \rho\in\mathcal{D}(\mathcal{H}).$$

Definition 7. We say that $\mathcal{P} \in \text{CPTP}(\mathcal{H} \otimes \mathcal{H}_M)$ is a d-dimensional ε -Universal Programmable Quantum processor, $\varepsilon - \text{UPQP}_d$, if dim $\mathcal{H} = d$ and for every $U \in \mathcal{U}(\mathcal{H})$ there exists a unit vector $|\phi_U\rangle \in \mathcal{H}_M$ such that:

$$\frac{1}{2} \left\| \operatorname{Tr}_{\mathcal{H}_M} \left[\mathcal{P} \left(\cdot \otimes |\phi_U\rangle \langle \phi_U | \right) \right] - U \cdot U^{\dagger} \right\|_{\diamond} \leq \varepsilon,$$

where $\|\cdot\|_{\diamond}$ denotes the diamond norm.

V. OPERATOR SPACES AND THE CB NORM

From now on, we denote as M_k the linear space of $k \times k$ complex matrices endowed with the operator norm (i.e., viewed as operators on the Hilbert space \mathbb{C}^k). In general, for any Hilbert space \mathcal{H} , we denote as $\mathcal{B}(\mathcal{H})$ the Banach space of linear operators on \mathcal{H} with the norm given by the operator norm.

An operator space is a complex Banach space E together with a sequence of "reasonable" norms in the spaces $M_k \otimes E = M_k(E)$, where $M_k(E)$ is the space of square matrices of order k with entries in E. This turns out to be equivalent to the following:

Definition 8. An operator space, E, is a closed subspace of some $\mathcal{B}(\mathcal{H})$, $E \subset \mathcal{B}(\mathcal{H})$. The norm in $M_k(E)$ is determined as the norm inherited from the embedding $M_k(E) \subset M_k(\mathcal{B}(\mathcal{H})) \simeq \mathcal{B}(\mathbb{C}^k \otimes \mathcal{H})$.

The natural morphisms between these objects are no longer bounded linear maps, but *completely* bounded linear maps:

Definition 9. Given a linear map between operator spaces $\Phi : E \to F$, we define its completely bounded norm as $\|\Phi\|_{cb} := \sup_k \|\mathrm{Id}_{M_k} \otimes \Phi : M_k(E) \to M_k(F)\|$. We say that Φ is completely bounded if $\|\Phi\|_{cb} < \infty$. We denote the Banach space of completely bounded maps from E into F as $\mathcal{CB}(E, F)$. If $\Phi \otimes \mathrm{Id}_{M_k}$ is an isometry $\forall k \in \mathbb{N}$, we say that Φ is a complete isometry.

Completely bounded maps provides the notion of duality of an operator space E, E^* . For any $k \in \mathbb{N}$ we just define $M_k(E^*)$ as the space of linear operators $\mathcal{L}(E, M_k)$ endowed with the c.b. norm.

Example 1.

- (i) There is a natural operator space structure on $\mathcal{B}(\mathcal{H})$ given by the identification $M_k(\mathcal{B}(\mathcal{H})) = \mathcal{B}(\mathbb{C}^k \otimes \mathcal{H}).$
- (ii) Then, $S_1(\mathcal{H})$ inherits its operator space structure from the former by duality.

Theorem 4. The natural embedding

$$\theta: \mathcal{B}(\mathcal{H} \otimes \mathcal{K}) \longrightarrow \mathcal{CB}(\mathcal{S}_1(\mathcal{H}), \mathcal{B}(\mathcal{K})),$$

determined by $\theta(U \otimes V)(T) = U(T) V \equiv \text{Tr}(U T^t) V$, where \cdot^t is the transpose map, is a complete isometry.

VI. TYPE/COTYPE OF A BANACH SPACE

To built the notion of type/cotype of a Banach space we need to introduce Rademacher random variables. These are random variables which takes de values -1 and 1 with equal probability 1/2. Let us denote by $\{\varepsilon_i\}_{i=1}^n$ a set of n i.i.d. such random variables. Then, $\mathbb{E}[f(\{\varepsilon_i\}_{i=1}^n)]$ will be the expected value of the function f over any combination of signs $\{\varepsilon_i\}_{i=1}^n \in \{-1,1\}^n$ with uniform weight $1/2^n$.

Definition 10. Let X be a Banach space and let $1 \le p \le 2$. We say X is of (Rademacher) type p if there exists a positive constant T such that for every natural number n and every sequence $\{x_i\}_{i=1}^n \subset X$ we have

$$\left(\mathbb{E}\Big[\big\|\sum_{i=1}^{n}\varepsilon_{i}x_{i}\big\|_{X}^{2}\Big]\right)^{1/2} \leq \mathrm{T}\left(\sum_{i=1}^{n}\|x_{i}\|_{X}^{p}\right)^{1/p},$$

Moreover, we define the Rademacher type p constant $T_p(X)$ as the infimum of the constants T fulfilling the previous inequality.

For the sake of completeness we will also introduce, for a given Banach space X and $2 \leq q < \infty$, the Rademacher cotype q constant $C_q(X)$ as the infimum of the constant C (in case they exist) such that the following inequality holds for every natural number n and every sequence $\{x_i\}_{i=1}^n \subset X$,

$$\mathbf{C}^{-1} \Big(\sum_{i=1}^n \|x_i\|_X^q\Big)^{1/q} \le \left(\mathbb{E}\Big[\big\|\sum_{i=1}^n \varepsilon_i x_i\big\|_X^2\Big]\right)^{1/2}$$

Proposition 1. Given a linear isomorphism between two Banach spaces X and Y, $\Phi : X \to Y$, the following relation between type constants holds:

$$T_p(X) \le ||\Phi|| ||\Phi^{-1}||T_p(Y).$$

Proposition 2. $T_p(X)$ is preserved by subspaces. That is, if S is a subspace of X (as Banach spaces), then $T_p(S) \leq T_p(X)$.

Fact 1.

$$T_2(\mathcal{S}_1(\mathbb{C}^d)) \ge d^{1/2}, \qquad T_2(\mathcal{B}(\mathbb{C}^d)) \le (C\log(d))^{1/2}.$$

	Previous results		This work	
Lower bounds	$\begin{split} m \geq K(\frac{1}{d})^{\frac{d+1}{2}} \left(\frac{1}{\varepsilon}\right)^{\frac{d-1}{2}} \\ m \geq K\left(\frac{d}{\varepsilon}\right)^2 \end{split}$	[1] [2]	$m \geq 2^{\frac{(1-\varepsilon)}{K}d-\frac{2}{3}\log d}$	[3, Th. 3]
Upper bounds	$m \le 2^{\frac{4d^2 \log d}{\varepsilon^2}}$	[2, 4, 5]	$m \le \left(\frac{K}{\varepsilon}\right)^{d^2}$	[3, Eq.2]

TABLE I. Best known bounds for the optimal memory size of UPQPs in comparison with the results presented here. Above, K denotes universal constants, not necessarily equal between them. Let us point out that the bound from [1] was deduced for programmable measurements instead of UPQPs. However, since a UPQP always can be turned into a Universal Programmable Quantum Measurement, this lower bound also applies for the case studied here. Notice that the alluded bound, although it enforces a strong scaling of m with ε , becomes trivial for large input dimension d. It is in this regime where the bound from [2] is more informative, but still exponentially weaker than the bound provided by Theorem [3, Th. 3].

VII. SOME COMMENTS ON BIBLIOGRAPHY

A. Quantum Information Theory

The standard reference in this field is [6] (so far, it was cited almost 35 000 times on Google Scholar!), but it was written twenty years ago and i would say that the presentation is getting a bit outdated and it is written for physicist. Then, for more modern and mathematically oriented introductions to Quantum Information Theory, i suggest the books [7], [8] (both are available online for free). For an introduction to Quantum Information Theory from Classical Shannon's theory, see [9].

B. Operator Spaces

Standard references on Operator Space Theory are [10, 11]. See [12, 13] for some recent connections between Operator Space Theory and Quantum Information.

- [1] D. Pérez-García, Phys. Rev. A **73**, 052315 (2006).
- [2] C. Majenz, Entropy in quantum information theory Communication and cryptography, Ph.D. thesis (2017).
- [3] A. M. Kubicki, C. Palazuelos, and D. Pérez-García, arXiv:1805.00756 (2018).
- [4] S. Ishizaka and T. Hiroshima, Phys. Rev. Lett. 101, 240501 (2008).
- [5] S. Beigi and R. König, New Journal of Physics 13, 093036 (2011).
- [6] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information: 10th Anniversary Edition, 10th ed. (Cambridge University Press, New York, NY, USA, 2011).
- [7] J. Watrous, The Theory of Quantum Information (Cambridge University Press, 2018).
- [8] G. Aubrun and S. J. Szarek, Alice and Bob Meet Banach: The Interface of Asymptotic Geometric Analysis and Quantum Information Theory (American Mathematical Society, 2017).
- [9] M. M. Wilde, Quantum Information Theory (Cambridge University Press, 2013).
- [10] E. G. Effros and Z.-J. Ruan, *Operator Spaces* (Oxford University Press, 2000).

- [11] G. Pisier, *Introduction to Operator Space Theory*, London Mathematical Society Lecture Note Series (Cambridge University Press, 2003).
- [12] V. Prakash Gupta, P. Mandayam, and V. Sunder, The Functional Analysis of Quantum Information Theory, A Collection of Notes Based on Lectures by Gilles Pisier, K. R. Parthasarathy, Vern Paulsen and Andreas Winter (Springer, 2015).
- [13] C. Palazuelos and T. Vidick, Journal of Mathematical Physics **57**, 015220 (2016), https://doi.org/10.1063/1.4938052.