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I. QUANTUM MODELS

We consider H,H′,K finite dimensional complex Hilbert spaces, denoting H ' Cd, H′ ' Cd′ , K '
Ck. We will usually consider {ei}di=1 as an orthonormal basis on H. Then, L(H) is the vector space
of linear operators on H.

Definition 1. We refer to a state as a linear operator ρ ∈ L(H) satisfying the conditions

1. ρ is positive,

2. ρ has trace one.

Definition 2. A quantum channel (or evolution) is a linear map

E : L(H) −→ L(H′),

which is completely positive and trace preserving. We denote by CPTP(H,H′) the set of these maps.

An important class of quantum channels are unitary channels, which acts by unitary conjugation

E : L(H) −→ L(H)
ρ 7→ U ρ U †,

where U ∈ L(H) is a unitary operator.

Theorem 1 (Stinespring dilation). Let E : L(H) −→ L(H′) be a completely positive and trace
preserving linear map. Then, there exist k ∈ N, a unitary U ∈ L(H ⊗ Ck) and a state φ ∈ L(H)
such that

E(ρ) = TrCkU (ρ⊗ φ) U †.

Definition 3. A Positive Operator Valued Measurement, POVM, is a family of operators {Ej}mj=1, Ej ∈
L(H), which

1. are positive

2. and decompose the identity, IdH =
∑m

j=1Ej.

Given a state ρ, the probability that the outcome of the POVM is j is given by Tr(Ej ρ).
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II. STATE DISTINGUISHABILITY

Task: a state is received under the hypothesis that it is ρ1 or ρ2, with probability 1/2 each. How
well can we distinguish between both possibilities?

Definition 4. Given a dichotomic POVM M = {E1, E2}, we define the probability of distinguishing
the states ρ1 and ρ2 using M as:

pMdist(ρ1, ρ2) :=
1

2
Tr(E1 · ρ1) +

1

2
Tr(E2 · ρ2).

Therefore, the optimal probability of distinguishing the states ρ1 and ρ2 is the optimization of the
former one over any possible POVM:

p∗dist(ρ1, ρ2) = sup
M={E1,Id−E1}

0≤E1≤Id

pMdist(ρ1, ρ2).

Theorem 2 (Helström).

p∗dist =
1

2
+

1

4
‖ρ1 − ρ2‖1.

Above, for T ∈ L(H), ‖T‖1 is the trace norm of T , defined as the `1 norm of the singular values of
T . We denote the space of operators on H endowed with the trace norm as S1(H).

III. CHANNEL DISTINGUISHABILITY

We promote the former discussion to the level of evolutions.
Task: a box is received under the hypothesis that on a state under our choice, it applies a quantum

channel E1 or E2, with probability 1/2 each. How well can we distinguish between both possibilities?

Definition 5. Given a state ρ ∈ L(H ⊗ K), and a dichotomic POVM M = {E1, E2}, where Ei ∈
L(H⊗K), we define the probability of distinguishing the channels E1 and E2 using ρ and M as:

qρ,Mdist (ρ1, ρ2) :=
1

2
Tr ((E1 ⊗ IdK) · ρ) +

1

2
Tr ((E2 ⊗ IdK) · ρ2) .

Therefore, the optimal probability of distinguishing the channels E1 and E2 is:

p∗dist(ρ1, ρ2) = sup
K

sup
M={E1,Id−E1} : 0≤E1≤Id

ρ∈D(H⊗K)

qρ,Mdist (E1, E2),

where K in the first supremum is a finite dimensional Hilbert space.

Theorem 3.

q∗dist =
1

2
+

1

4
‖E1 − E2‖�.

Above, for any T : L(H) −→ L(H), ‖T ‖� is the diamond norm defined as:

‖T ‖� := sup
K

∥∥T : S1(H⊗K) −→ S1(H⊗K)
∥∥,

where K is restricted to be a finite dimensional Hilbert space.
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IV. UNIVERSAL PROGRAMMABLE QUANTUM PROCESSORS

Definition 6. A quantum channel P ∈ CPTP(H⊗HM ) is a d-dimensional Universal Programmable
Quantum Processor, UPQPd, if dimH = d and for every U ∈ U(H) there exists a unit vector |φU 〉 ∈
HM such that:

TrHM
[P (ρ⊗ |φU 〉〈φU |)] = UρU †, for every ρ ∈ D(H).

Definition 7. We say that P ∈ CPTP(H ⊗ HM ) is a d-dimensional ε–Universal Programmable
Quantum processor, ε − UPQPd, if dimH = d and for every U ∈ U(H) there exists a unit vector
|φU 〉 ∈ HM such that:

1

2

∥∥∥TrHM
[P ( · ⊗ |φU 〉〈φU |)] − U · U †

∥∥∥
�
≤ ε,

where ‖ · ‖� denotes the diamond norm.

V. OPERATOR SPACES AND THE CB NORM

From now on, we denote as Mk the linear space of k × k complex matrices endowed with the
operator norm (i.e., viewed as operators on the Hilbert space Ck). In general, for any Hilbert space
H, we denote as B(H) the Banach space of linear operators on H with the norm given by the operator
norm.

An operator space is a complex Banach space E together with a sequence of “reasonable” norms
in the spaces Mk ⊗ E = Mk(E), where Mk(E) is the space of square matrices of order k with entries
in E. This turns out to be equivalent to the following:

Definition 8. An operator space, E, is a closed subspace of some B(H), E ⊂ B(H). The norm in
Mk(E) is determined as the norm inherited from the embedding Mk(E) ⊂Mk(B(H)) ' B(Ck ⊗H).

The natural morphisms between these objects are no longer bounded linear maps, but completely
bounded linear maps:

Definition 9. Given a linear map between operator spaces Φ : E → F , we define its completely
bounded norm as ‖Φ‖cb := supk ‖IdMk

⊗Φ : Mk(E)→Mk(F )‖. We say that Φ is completely bounded
if ‖Φ‖cb <∞. We denote the Banach space of completely bounded maps from E into F as CB(E,F ).

If Φ⊗ IdMk
is an isometry ∀k ∈ N, we say that Φ is a complete isometry.

Completely bounded maps provides the notion of duality of an operator space E, E∗. For any
k ∈ N we just define Mk(E

∗) as the space of linear operators L(E,Mk) endowed with the c.b. norm.

Example 1.

(i) There is a natural operator space structure on B(H) given by the identification Mk(B(H)) =
B(Ck ⊗H).

(ii) Then, S1(H) inherits its operator space structure from the former by duality.
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Theorem 4. The natural embedding

θ : B(H⊗K) −→ CB(S1(H),B(K)),

determined by θ(U ⊗ V ) (T ) = U(T ) V ≡ Tr(U T t) V , where ·t is the transpose map, is a complete
isometry.

VI. TYPE/COTYPE OF A BANACH SPACE

To built the notion of type/cotype of a Banach space we need to introduce Rademacher random
variables. These are random variables which takes de values −1 and 1 with equal probability 1/2. Let
us denote by {εi}ni=1 a set of n i.i.d. such random variables. Then, E[f({εi}ni=1)] will be the expected
value of the function f over any combination of signs {εi}ni=1 ∈ {−1, 1}n with uniform weight 1/2n.

Definition 10. Let X be a Banach space and let 1 ≤ p ≤ 2. We say X is of (Rademacher) type p if
there exists a positive constant T such that for every natural number n and every sequence {xi}ni=1 ⊂ X
we have (

E
[∥∥ n∑

i=1

εixi
∥∥2
X

])1/2

≤ T

(
n∑
i=1

‖xi‖pX

)1/p

,

Moreover, we define the Rademacher type p constant Tp(X) as the infimum of the constants T fulfilling
the previous inequality.

For the sake of completeness we will also introduce, for a given Banach space X and 2 ≤ q < ∞,
the Rademacher cotype q constant Cq(X) as the infimum of the constant C (in case they exist) such
that the following inequality holds for every natural number n and every sequence {xi}ni=1 ⊂ X,

C−1
( n∑
i=1

‖xi‖qX
)1/q

≤

(
E
[∥∥ n∑

i=1

εixi
∥∥2
X

])1/2

Proposition 1. Given a linear isomorphism between two Banach spaces X and Y , Φ : X → Y , the
following relation between type constants holds:

Tp(X) ≤ ‖Φ‖‖Φ−1‖Tp(Y ).

Proposition 2. Tp(X) is preserved by subspaces. That is, if S is a subspace of X (as Banach spaces),
then Tp(S) ≤ Tp(X).

Fact 1.

T2(S1(Cd)) ≥ d1/2, T2(B(Cd)) ≤ (C log(d))1/2.
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Previous results This work

Lower
bounds

m ≥ K( 1
d )

d+1
2

(
1
ε

) d−1
2

m ≥ K
(
d
ε

)2 [1]

[2]
m ≥ 2

(1−ε)
K d− 2

3 log d [3,
Th. 3]

Upper
bounds

m ≤ 2
4d2 log d

ε2 [2, 4, 5] m ≤
(
K
ε

)d2

[3,
Eq.2]

TABLE I. Best known bounds for the optimal memory size of UPQPs in comparison with the results presented
here. Above, K denotes universal constants, not necessarily equal between them. Let us point out that the
bound from [1] was deduced for programmable measurements instead of UPQPs. However, since a UPQP always
can be turned into a Universal Programmable Quantum Measurement, this lower bound also applies for the
case studied here. Notice that the alluded bound, although it enforces a strong scaling of m with ε, becomes
trivial for large input dimension d. It is in this regime where the bound from [2] is more informative, but still
exponentially weaker than the bound provided by Theorem [3, Th. 3].

VII. SOME COMMENTS ON BIBLIOGRAPHY

A. Quantum Information Theory

The standard reference in this field is [6] (so far, it was cited almost 35 000 times on Google
Scholar!), but it was written twenty years ago and i would say that the presentation is getting a
bit outdated and it is written for physicist. Then, for more modern and mathematically oriented
introductions to Quantum Information Theory, i suggest the books [7], [8] (both are available online
for free). For an introduction to Quantum Information Theory from Classical Shannon’s theory, see
[9].

B. Operator Spaces

Standard references on Operator Space Theory are [10, 11]. See [12, 13] for some recent connections
between Operator Space Theory and Quantum Information.
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