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I. QUANTUM MODELS

We consider H, H’, K finite dimensional complex Hilbert spaces, denoting H ~ C%, H' ~ C¥, K ~
C*. We will usually consider {e;}% , as an orthonormal basis on H. Then, £(#) is the vector space
of linear operators on .

Definition 1. We refer to a state as a linear operator p € L(H) satisfying the conditions

1. p 1is positive,

2. p has trace one.

Definition 2. A quantum channel (or evolution) is a linear map

£ LOH) — L(H),

which is completely positive and trace preserving. We denote by CPTP(H,H’) the set of these maps.
An important class of quantum channels are unitary channels, which acts by unitary conjugation

E: L(H) — L(H)
p — UpUT,

where U € L(H) is a unitary operator.

Theorem 1 (Stinespring dilation). Let & : L(H) — L(H') be a completely positive and trace
preserving linear map. Then, there exist k € N, a unitary U € L(H ® C¥) and a state ¢ € L(H)
such that

E(p) = TrerU (p@ ¢) UT.

Definition 3. A Positive Operator Valued Measurement, POVM, is a family of operators { E; };”:1, E; ¢
L(H), which

1. are positive
2. and decompose the identity, Idy = Z;n:l E;.

Given a state p, the probability that the outcome of the POVM is j is given by Tr(E; p).



II. STATE DISTINGUISHABILITY

Task: a state is received under the hypothesis that it is p; or pe, with probability 1/2 each. How
well can we distinguish between both possibilities?

Definition 4. Given a dichotomic POVM M = {Ey, E2}, we define the probability of distinguishing
the states p1 and py using M as:

1 1
p%t(ﬁl,PZ) =3 Tr(Er - p1) + B Tr(Es - p2).

Therefore, the optimal probability of distinguishing the states p1 and py is the optimization of the
former one over any possible POVM:

Phst(p1sp2) = sup  pit(p1, p2).
M:{E1 ,Id*E1}
0<FE;<Id

Theorem 2 (Helstrom).

. 11
Paist = 5 + 1 llp1 — p2l|1-

Above, for T' € L(H), ||T||1 is the trace norm of T', defined as the ¢; norm of the singular values of
T. We denote the space of operators on H endowed with the trace norm as S;(H).

III. CHANNEL DISTINGUISHABILITY

We promote the former discussion to the level of evolutions.
Task: a box is received under the hypothesis that on a state under our choice, it applies a quantum
channel &; or &, with probability 1/2 each. How well can we distinguish between both possibilities?

Definition 5. Given a state p € L(H ® K), and a dichotomic POVM M = {E1, Ex}, where E; €
L(H ® K), we define the probability of distinguishing the channels & and & using p and M as:

1 1
a5 M (1, p2) = 5 I (&1 ®@1dk) - p) + 5 I (E2 ®1dk) - p2) -

Therefore, the optimal probability of distinguishing the channels &1 and &; is:

,M
Piist(p1, p2) = sup sup ahr (61, E2),
K M={Eyld—FE}:0<E;<Id
pED(H®K)

where IC in the first supremum is a finite dimensional Hilbert space.

Theorem 3.

. 1 1
Qaist = 5 1 7 €1 — &lo-

Above, for any T : L(H) — L(H), ||T|lo is the diamond norm defined as:
1T o := sup |7 :SiH®K) — Si(HeK)

)

where I is restricted to be a finite dimensional Hilbert space.



IV. UNIVERSAL PROGRAMMABLE QUANTUM PROCESSORS

Definition 6. A quantum channel P € CPTP(H ® Har) is a d-dimensional Universal Programmable
Quantum Processor, UPQP,, if dimH = d and for every U € U(H) there exists a unit vector |¢y) €
Har such that:

Try,, [P (0 ® [9u)(dul)] = UpUT,  for every p € D(H).

Definition 7. We say that P € CPTP(H ® Hyas) is a d-dimensional e—Universal Programmable
Quantum processor, ¢ — UPQP,, if dimH = d and for every U € U(H) there exists a unit vector
|ov) € Har such that:

> | 1P @ l6000D) - U0 <,

where || - ||o denotes the diamond norm.

V. OPERATOR SPACES AND THE CB NORM

From now on, we denote as M) the linear space of k x k complex matrices endowed with the
operator norm (i.e., viewed as operators on the Hilbert space C¥). In general, for any Hilbert space
‘H, we denote as B(H) the Banach space of linear operators on H with the norm given by the operator
norm.

An operator space is a complex Banach space E together with a sequence of “reasonable” norms
in the spaces My ® E = M (E), where My(FE) is the space of square matrices of order k with entries
in F. This turns out to be equivalent to the following:

Definition 8. An operator space, E, is a closed subspace of some B(H), E C B(H). The norm in
M;(E) is determined as the norm inherited from the embedding My, (E) C My(B(H)) ~ B(C* @ H).

The natural morphisms between these objects are no longer bounded linear maps, but completely
bounded linear maps:

Definition 9. Given a linear map between operator spaces ® : E — F, we define its completely

bounded norm as ||®||p = supy, [[Idar, @ @ : My (E) — Mi(F)|. We say that ® is completely bounded

if [| @y < 0. We denote the Banach space of completely bounded maps from E into F' as CB(E, F).
If ® ® Idyyg, is an isometry Vk € N, we say that ® is a complete isometry.

Completely bounded maps provides the notion of duality of an operator space F, E*. For any
k € N we just define My (E*) as the space of linear operators L(E, M}) endowed with the c.b. norm.

Example 1.

(i) There is a natural operator space structure on B(H) given by the identification My(B(H)) =
B(Ck @ H).

(ii) Then, S1(H) inherits its operator space structure from the former by duality.



Theorem 4. The natural embedding
0:B(H®K)— CB(Si1(H),B(K)),
determined by O(U @ V) (T) = U(T)V = Te(U T*) V, where -t is the transpose map, is a complete

1sometry.

VI. TYPE/COTYPE OF A BANACH SPACE

To built the notion of type/cotype of a Banach space we need to introduce Rademacher random
variables. These are random variables which takes de values —1 and 1 with equal probability 1/2. Let
us denote by {e;}7" ; a set of n i.i.d. such random variables. Then, E[f({e;}!" ;)] will be the expected
value of the function f over any combination of signs {e;} ; € {—1,1}" with uniform weight 1/2".

Definition 10. Let X be a Banach space and let 1 < p < 2. We say X is of (Rademacher) type p if

there exists a positive constant T such that for every natural number n and every sequence {x;}7 ; C X
we have

(E[H gmui})ms T (g rmw&) "

Moreover, we define the Rademacher type p constant T;,(X) as the infimum of the constants T fulfilling
the previous inequality.

For the sake of completeness we will also introduce, for a given Banach space X and 2 < ¢ < oo,

the Rademacher cotype ¢ constant C,(X) as the infimum of the constant C (in case they exist) such
that the following inequality holds for every natural number n and every sequence {z;}; C X,

) o . , 1/2
(X ) e (E[”;“W”XD

Proposition 1. Given a linear isomorphism between two Banach spaces X and Y, ® : X — Y, the
following relation between type constants holds:

Tp(X) < [[@[[|27H|T,(Y).

Proposition 2. T, (X) is preserved by subspaces. That is, if S is a subspace of X (as Banach spaces),
then Tp(S) < Tp(X).

Fact 1.

Ty(S1(Ch) > d'/2, Ty(B(CY))

IN

(Clog(d))2



Previous results This work
d—1
m > KL)% (L) = T B
bLowe;r > K(3) (;) [ m> 9Ued—2logd B,
ounds m>K(9) 2l Th. 3]
2 o 2
Upper m < 2" 22 5] m < (%) ]
bounds €
Eq.2]

TABLE I. Best known bounds for the optimal memory size of UPQPs in comparison with the results presented
here. Above, K denotes universal constants, not necessarily equal between them. Let us point out that the
bound from [I] was deduced for programmable measurements instead of UPQPs. However, since a UPQP always
can be turned into a Universal Programmable Quantum Measurement, this lower bound also applies for the
case studied here. Notice that the alluded bound, although it enforces a strong scaling of m with e, becomes
trivial for large input dimension d. It is in this regime where the bound from [2] is more informative, but still
exponentially weaker than the bound provided by Theorem [3| Th. 3].

VII. SOME COMMENTS ON BIBLIOGRAPHY

A. Quantum Information Theory

The standard reference in this field is [6] (so far, it was cited almost 35 000 times on Google
Scholar!), but it was written twenty years ago and i would say that the presentation is getting a
bit outdated and it is written for physicist. Then, for more modern and mathematically oriented
introductions to Quantum Information Theory, i suggest the books [7], [8] (both are available online
for free). For an introduction to Quantum Information Theory from Classical Shannon’s theory, see
[9].

B. Operator Spaces

Standard references on Operator Space Theory are [10, [IT]. See [12], [13] for some recent connections
between Operator Space Theory and Quantum Information.
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