Banach spaces of functions having infinitely many zeros

Juan B. Seoane Sepúlveda (UCM, Madrid, Spain) **Per Enflo's Workshop**. *Solving the Invariant Subspace Problem*

Kent, 2001

Valencia, 2023

TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 366, Number 2, February 2014, Pages 611–625 S 0002-9947(2013)05747-9 Article electronically sublished on July 26, 2013

SOME RESULTS AND OPEN QUESTIONS ON SPACEABILITY IN FUNCTION SPACES

PER H. ENFLO, VLADIMIR I. GURARIY, AND JUAN B. SEOANE-SEPÚLVEDA

TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 366, Number 2, February 2014, Pages 611–625 S 0002-9947(2013)05747-9 Article electronically published on July 26, 2013

SOME RESULTS AND OPEN QUESTIONS ON SPACEABILITY IN FUNCTION SPACES

PER H. ENFLO, VLADIMIR I. GURARIY, AND JUAN B. SEOANE-SEPÚLVEDA

Sierpiński-Zygmund functions

Sierpiński-Zygmund functions

Henry Blumberg (1886–1950)

Sierpiński-Zygmund functions

Henry Blumberg (1886-1950)

Theorem (Blumberg, 1922)

Let $f: \mathbb{R} \to \mathbb{R}$ be an arbitrary function. There exists a dense subset $S \subset \mathbb{R}$ such that the function $f|_S$ is continuous.

A careful reading of the proof of this result shows that the previous set, S, is countable.

A careful reading of the proof of this result shows that the previous set, S, is countable.

Can we choose the subset *S* in Blumberg's theorem to be uncountable?

Theorem (Sierpiński-Zygmund, 1923)

There exists a function $f: \mathbb{R} \to \mathbb{R}$ such that, for any set $Z \subset \mathbb{R}$ of cardinality the continuum, the restriction $f|_Z$ is not continuous.

Theorem (Sierpiński-Zygmund, 1923)

There exists a function $f: \mathbb{R} \to \mathbb{R}$ such that, for any set $Z \subset \mathbb{R}$ of cardinality the continuum, the restriction $f|_Z$ is not continuous.

A. Zygmund (1882–1969)

W. Sierpiński (1900–1992)

$$\mathcal{SZ}(\mathbb{R}) = \{ f : \mathbb{R} \to \mathbb{R} : f \text{ is a Sierpiński-Zygmund function } \}$$

<ロ > ◆ 個 > ◆ 重 > ◆ 重 > ・ 重 ・ の Q (や

$$\mathcal{SZ}(\mathbb{R}) = \{ f : \mathbb{R} \to \mathbb{R} : f \text{ is a Sierpiński-Zygmund function } \}$$

Theorem (Gámez, Muñoz, Sánchez, S., 2010)

 $\mathcal{SZ}(\mathbb{R})$ is κ -lineable for some cardinal κ with $\mathfrak{c} < \kappa \leq 2^{\mathfrak{c}}$.

◆□▶ ◆御▶ ◆恵▶ ◆恵▶ ○恵 ○夕○○

8 / 18

ne Enflo's Workshop

$$\mathcal{SZ}(\mathbb{R}) = \{ f : \mathbb{R} \to \mathbb{R} : f \text{ is a Sierpiński-Zygmund function } \}$$

Theorem (Gámez, Muñoz, Sánchez, S., 2010)

 $\mathcal{SZ}(\mathbb{R})$ is κ -lineable for some cardinal κ with $\mathfrak{c} < \kappa \leq 2^{\mathfrak{c}}$. Assuming the Generalized Continuum Hypothesis, $\mathcal{SZ}(\mathbb{R})$ is $2^{\mathfrak{c}}$ -lineable.

(ロト 4团 M 세팅 M 세팅 M 등 - 쒸Q()

8 / 18

Can the 2^c -lineability of $\mathcal{SZ}(\mathbb{R})$ be obtained in ZFC?

Can the 2^c -lineability of $\mathcal{SZ}(\mathbb{R})$ be obtained in ZFC?

Theorem (Gámez, S., 2014)

The 2^c -lineability of $\mathcal{SZ}(\mathbb{R})$ in undecidable.

Theorem (Gurariy & Quarta, 2005)

Let $\widehat{C}[0,1]$ be the subset of C[0,1] of functions admitting one (and only one) absolute maximum.

10 / 18

Seoane Enflo's Workshop

Theorem (Gurariy & Quarta, 2005)

Let $\widehat{C}[0,1]$ be the subset of C[0,1] of functions admitting one (and only one) absolute maximum.

If $V \subset \widehat{C}[0,1] \cup \{0\}$ is a non-trivial linear space, then V is 1-dimensional.

However...

Theorem (Gurariy & Quarta, 2005)

Let $\widehat{C}[0,1]$ be the subset of C[0,1] of functions admitting one (and only one) absolute maximum.

If $V \subset \widehat{C}[0,1] \cup \{0\}$ is a non-trivial linear space, then V is 1-dimensional.

However... the set $\widehat{\mathcal{C}}[0,1]$ is a G_{δ} -dense subset of $\mathcal{C}[0,1]$.

Theorem (Gurariy & Quarta, 2005)

Let $\widehat{C}[0,1]$ be the subset of C[0,1] of functions admitting one (and only one) absolute maximum.

If $V\subset \widehat{C}[0,1]\cup\{0\}$ is a non-trivial linear space, then V is 1-dimensional.

However... the set $\widehat{\mathcal{C}}[0,1]$ is a G_{δ} -dense subset of $\mathcal{C}[0,1]$.

What about the set $\widehat{\mathcal{C}}(\mathbb{R})$?

Theorem (Gurariy & Quarta, 2005)

Let $\widehat{C}[0,1]$ be the subset of C[0,1] of functions admitting one (and only one) absolute maximum.

If $V\subset \widehat{C}[0,1]\cup\{0\}$ is a non-trivial linear space, then V is 1-dimensional.

However... the set $\widehat{\mathcal{C}}[0,1]$ is a G_{δ} -dense subset of $\mathcal{C}[0,1]$.

What about the set $\widehat{\mathcal{C}}(\mathbb{R})$?

In 2005 Gurariy and Quarta proved that $\widehat{\mathcal{C}}(\mathbb{R})$ is 2-lineable.

4□ > 4圊 > 4불 > 4불 > 5 = 90

V. I. Gurariy (1935–2005)

V. I. Gurariy (1935–2005)

Is $\widehat{\mathcal{C}}(\mathbb{R})$ *n*-lineable for some n > 2?

V. I. Gurariy (1935–2005)

Is $\widehat{\mathcal{C}}(\mathbb{R})$ *n*-lineable for some n > 2?

No.

V. I. Gurariy (1935–2005)

Is $\widehat{\mathcal{C}}(\mathbb{R})$ *n*-lineable for some n > 2?

No.

Bernal, Cabana, Muñoz, S., On the dimension of subspaces of continuous functions attaining their maximum finitely many times. Trans. Amer. Math. Soc. 373 (2020), 3063–3083.

Secane Enflo's Workshop 11 / 18

Annulling functions in C[0,1]

Annulling functions in C[0,1]

Definition

A function $f \in C[0,1]$ is said to be an annulling function if f has infinitely many zeros in [0,1].

Annulling functions in C[0,1]

Definition

A function $f \in C[0,1]$ is said to be an annulling function if f has infinitely many zeros in [0,1].

It is easy to construct a $\mathfrak{c}-\text{generated}$ algebra of annulling functions in $\mathcal{C}[0,1].$ But...

Annulling functions in C[0,1]

Definition

A function $f \in C[0,1]$ is said to be an annulling function if f has infinitely many zeros in [0,1].

It is easy to construct a $\mathfrak{c}-\text{generated}$ algebra of annulling functions in $\mathcal{C}[0,1].$ But...

Is the set of annulling functions spaceable in C[0,1]?

Annulling functions and spaceability

Annulling functions and spaceability

Theorem (Enflo, Gurariy, S., 2014)

Let X be any infinite dimensional closed subspace of $\mathcal{C}[0,1]$.

There exists:

- An infinite dimensional closed subspace Y of X, and
- a sequence $\{t_k\}_{k\in\mathbb{N}}\subset[0,1]$ (of pairwise different elements),

such that $y(t_k) = 0$ for every $k \in \mathbb{N}$ and every $y \in Y$.

Some consequences of the previous result...

Definition

The **oscillation** $O_{[\alpha,\beta]}x$ of $x \in \mathcal{C}[0,1]$ on $[\alpha,\beta]$ is defined as

$$O_{[\alpha,\beta]}x = \sup_{t,s\in[\alpha,\beta]} |x(t)-x(s)|.$$

Let a>0 and $t_0\in[0,1]$. We say that t_0 is a-oscillating for a family of functions $F\subset\mathcal{C}[0,1]$ if for every d>0 there is $x\in F$ such that

$$O_{[0,1]\cap[t_0-d,t_0+d]}x>a.$$

For short, we shall say that t_0 is oscillating if it is a—oscillating for some a>0.

- (ロ) (問) (E) (E) (E) の(C)

Secone Enflo's Workshop 14 / 18

In general, the set of all oscillating points (a—oscillating points) of a given family $F \subset \mathcal{C}[0,1]$ shall be called the **oscillating spectrum** of F (denoted $\Omega(F)$, or $\Omega_a(F)$, respectively).

Some results on $\Omega(F)$ (Enflo, Gurariy, S., 2014)

- A uniformly bounded set $F \subset \mathcal{C}[0,1]$ is compact if and only if $\Omega(F) = \emptyset$.
- Let X be a subspace of C[0,1]. If $\Omega(X)$ is finite then X is isomorphic to a subspace of c_0 .
- For any closed subset $M \subset [0,1]$ there exists a subspace X of $\mathcal{C}[0,1]$ with $M=\Omega(X)$.
- There exists a subspace $X \subset \mathcal{C}[0,1]$ for which $\Omega(X) = (0,1]$.

4 D > 4 A > 4 B > 4 B > B

Enflo's Workshop

Q1: Let X be a subspace of C[0,1]. If $\Omega(X)$ is finite then X is isomorphic to a subspace of c_0 . What if $\Omega(X)$ is countable?

Q2: Given X, Y subspaces of C[0,1], how must $\Omega(X)$ and $\Omega(Y)$ be in order to make X and Y non-isomorphic?

Seoane

Q1: Let X be a subspace of C[0,1]. If $\Omega(X)$ is finite then X is isomorphic to a subspace of c_0 . What if $\Omega(X)$ is countable?

Q2: Given X, Y subspaces of C[0,1], how must $\Omega(X)$ and $\Omega(Y)$ be in order to make X and Y non-isomorphic?

Q3: Which conditions on $M \subset [0,1]$ shall guarantee that $M = \Omega(X)$ for some subspace $X \subset \mathcal{C}[0,1]$?

Seoane

- **Q1**: Let X be a subspace of C[0,1]. If $\Omega(X)$ is finite then X is isomorphic to a subspace of c_0 . What if $\Omega(X)$ is countable?
- **Q2:** Given X, Y subspaces of $\mathcal{C}[0,1]$, how must $\Omega(X)$ and $\Omega(Y)$ be in order to make X and Y non-isomorphic?
- **Q3**: Which conditions on $M \subset [0,1]$ shall guarantee that $M = \Omega(X)$ for some subspace $X \subset \mathcal{C}[0,1]$?
- Q4: What are the properties that $\Omega(X)$ should enjoy in order to obtain that X is uncomplemented in C[0,1]?

Enflo's Workshop

Seoane Enflo's Workshop 17 / 18

Rui Xie. On the existing set of the oscillating spectrum. **J. Funct. Anal.** 284 (2023), no. 8, P. 109850, 27 pp.

Rui Xie. On the existing set of the oscillating spectrum. **J. Funct. Anal.** 284 (2023), no. 8, P. 109850, 27 pp.

the author showed that

Rui Xie. On the existing set of the oscillating spectrum. **J. Funct. Anal.** 284 (2023), no. 8, P. 109850, 27 pp.

the author showed that

(1.) M is a F_{σ} set if and only if there exists a subspace X of $\mathcal{C}[0,1]$ such that $\Omega(X)=M$, and that

17 / 18

Rui Xie. On the existing set of the oscillating spectrum. **J. Funct. Anal.** 284 (2023), no. 8, P. 109850, 27 pp.

the author showed that

- (1.) M is a F_{σ} set if and only if there exists a subspace X of $\mathcal{C}[0,1]$ such that $\Omega(X)=M$, and that
- (2.) for any F_{σ} set M there exists a complemented subspace X of $\mathcal{C}[0,1]$ such that $\Omega(X)=M$;

17 / 18

Secone Enflo's Workshop

Rui Xie. On the existing set of the oscillating spectrum. **J. Funct. Anal.** 284 (2023), no. 8, P. 109850, 27 pp.

the author showed that

- (1.) M is a F_{σ} set if and only if there exists a subspace X of $\mathcal{C}[0,1]$ such that $\Omega(X)=M$, and that
- (2.) for any F_{σ} set M there exists a complemented subspace X of $\mathcal{C}[0,1]$ such that $\Omega(X)=M$;

answering Q3 and providing some info and directions towards Q4.

◆□▶◆□▶◆重▶◆重 りゅぐ

17 / 18

Seoane Enflo's Workshop

Per in Paseky, 1995. Thanks for your attention!

18 / 18