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Quantum Many Body Problems

» 7 complex Hilbert space (finite-dimensional)
Norm-one vectors |1)) € H are called states.

» H:H — H Hamiltonian (i.e. self-adjoint operator)

where

> Ao < A <...< A, (eigenvalues)

> P; projector onto eigenspace associated to A;
Aim

Study the ground states, i.e. norm-one eigenvectors associated to Ag.
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Regular lattice, e.g. Z™.
At each x € Z™ , let H, := C9.

For every A C Z™ finite, let
Hp = QxerHx = cd"

and a local Hamiltonian, e.g.

Hrn @ Ha = Ha . Ha= Z hx,y ® Lrest

where h, , acts on sites H, ® H, as a prefixed self-adjoint operator
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» Regular lattice, e.g. Z™.

> At each x € Z™ | let H, := C“.

» For every A C Z™ finite, let

Hp = QxenHx = cd™

and a local Hamiltonian, e.g.

Hp = Z hx,y @ Lrest

X,y €N
X~y

Def. (Ha)n is gapped if infa A1(Ha) — Ao(Ha) > 0

» Two dimensions (or greater): Cubitt, Pérez-Garcia, Wolff (Nature, 2015)
» One dimension: Bauch, Cubitt, Lucia, Pérez-Garcia (2018).



Example: AKLT model (1987)
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Marius Lemm,l’ﬂ Anders W. Sandvik,2’3*ﬁ and Ling Wang4’ﬁ
! Department of Mathematics, Harvard University,
1 Ozford Street, Cambridge, Massachusetts 02138, USA
2 Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, USA

3 Beijing National Laboratory for Condensed Matter Physics and Institute of Physics,

Chinese Academy of Sciences, Beijing 100190, China
4 Zhejiang Institute of Modern Physics, Zhejiang University, Hangzhou 310027, China

(Dated: October 25, 2019)

Hml-,m2 = ® C4' (1)

5€Amy my

On Huny m,, the AKLT Hamiltonian is defined by

AKLT (3)
Hm11m2 - Z P] k> (2)
G k€EAmy mot
j~k

where P.(E;g denotes the projection onto total spin 3 across
the bond connecting vertices j and k. By convention, the
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» Low entanglement. Area Law. Decay of Correlations.

Let A= AU B C Z™ finite set

Hr=Ha® Hp

Let |¢) be a state. It can be written as

W)= lu) ®|v).

Jj

We say that |[¢)) is entangled if

[V) # [a) @ [g)  for every  [1ha), [VB).
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Ground states of local gapped hamiltonians are “simpler” than generic states:
» Low entanglement. Area Law. Decay of Correlations.

» Approximation by Tensor Network States.

Let A C Z finite set with N := |A|, so that Ha = ®@xenHy = C?

> Generic state (number of parameters: d")

d

> Tensor networks state (number of parameters: mdD?)

d
wy= 3 tr(AEj]...AEy) ) ®...® |in)

ityenniy=1

where AV € Mp. p(C) fori=1,...,dandj=1,...,N.




Ground states of local gapped hamiltonians are “simpler” than generic states:
» Low entanglement. Area Law. Decay of Correlations.

» Approximation by Tensor Network States.

Every tensor network state can be seen as the ground state of a hamiltonian
called parent hamiltonian.

Q. When is this parent Hamiltonian gapped?
In 1D this is known to be a generic property. But what about 2D?77
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At each site x € Z™, H, := C.

Let A C Z™ finite set,

Ha = QxenHx = c

Ap = B(Ha) (linear operators)

If A C N C Z", there is a canonical linear isometry
Ap —  An
(0] — 0® ]]'/\'\/\

This allows to consider the algebra of local observables and the algebra of
quasi-local observables (its completion)

Aoc= |J Ax . A=Ak

X finite



Hp = QxenHx
Ap = B(Ha)
A= U Ax

X finite

Local Interactions:

X finite — dx € Ax

Local Hamiltonian:
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Local Interactions:

Ha = @xenHx
X finite — dx € Ax
Ap = B(HA)
Local Hamiltonian:
A= ] Ax Hy=)_ ox
X finite XCA
Q. s there a way of defining the Hamiltonian on the whole system?
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Local Interactions:
HA = QxenHx

X finite — dx € Ax

Ap = B(Ha)

Local Hamiltonian:

A= UAX H/\ZZ‘DX

X finite XCA

Q. s there a way of defining the Hamiltonian on the whole system? )

Using dynamics:
Rot —~ Th:A — A
A — eitH/\Ae—itH/\

Maybe we can define

R>t — THA)= lim [§(A) 7777
(A) Nim, A(A)
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Lieb-Robinson estimates

Let ® be interaction on Z™ with
X finite +— ®x € Ax st |Px| = o(efkdiam(x))
and A € Ajp,.

Then, forevery 0 < /¢ < L

[P (A) = TR < C o] A e (D

A

N = {x: dist(x,\o) </}

N
4

Lieb, Robinson (1972), Hastings (2004), Nachtergaele, Sims (2006), Hastings,
Koma (2006), Nachtergaele, Ogata, Sims (2010) ...



Problem

Let @ interaction with exponential decay and let A € Ap, and let

rs(A) = e"SHIAe—I’SH7 scC.

T3, (A) —T3,(A)]| < 772

164
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Theorem

Let ® be (nonzero) interaction on Z™. Fixed A € Ajoc, the sequence

s 3, (A)

(¢ eN)

converges exponentially fast over compact subsets of the region:

7 Z™ (m>2)
Finite Range 1
— >
dx =0if (( I, Co
diam (X) > r 5
Araki 1969 Robinson 68, Ruelle 69
Bouch 2015
Exponential
Decay A
2C¢
[®x|| =
O(e—/\diam(X))
Optimal?7??
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Abstract

Projected entangled pair states (PEPS) are used in practice as an efficient parametriza-
tion of the set of ground states of quantum many body systems. The aim of this paper
is to present, for a broad mathematical audience, some mathematical questions about
PEPS.



