Mean ergodic composition operators in spaces of homogeneous polynomials

Daniel Santacreu Ferrà
Joint work with David Jornet and Pablo Sevilla

Universitat Politècnica de València

V Congreso de Jóvenes Investigadores de la RSME. Universitat Jaume Primer. January 27-31, 2020

Let X be a Banach space.

■ We denote by $\mathcal{P}(^mX)$ the space of *m*-homogeneous polynomials on X.

Let X be a Banach space.

- We denote by $\mathcal{P}(^mX)$ the space of *m*-homogeneous polynomials on *X*.
- A map $p: X \to \mathbb{C}$ is in $\mathcal{P}(^mX)$ if there exists a continuous m-linear operator $L: X \times .^m . \times X \to \mathbb{C}$ such that $L(x, .^m ., x) = p(x)$ for all $x \in X$.

Let X be a Banach space.

- We denote by $\mathcal{P}(^mX)$ the space of *m*-homogeneous polynomials on *X*.
- A map $p: X \to \mathbb{C}$ is in $\mathcal{P}(^mX)$ if there exists a continuous m-linear operator $L: X \times .^m . \times X \to \mathbb{C}$ such that $L(x, .^m ., x) = p(x)$ for all $x \in X$.
- Let $\varphi: X \to X$ be a holomorphic mapping. We denote by $C_{\varphi}: \mathcal{P}(^mX) \to H(X)$ the composition operator. It is defined by

$$C_{\varphi}(p) = p \circ \varphi.$$

Let X be a Banach space.

- We denote by $\mathcal{P}(^mX)$ the space of *m*-homogeneous polynomials on *X*.
- A map $p: X \to \mathbb{C}$ is in $\mathcal{P}(^mX)$ if there exists a continuous m-linear operator $L: X \times .^m . \times X \to \mathbb{C}$ such that $L(x, .^m ., x) = p(x)$ for all $x \in X$.
- Let $\varphi: X \to X$ be a holomorphic mapping. We denote by $C_{\varphi}: \mathcal{P}(^mX) \to H(X)$ the composition operator. It is defined by

$$C_{\varphi}(p) = p \circ \varphi.$$

We consider two topologies:

- $\mathcal{P}(^mX)_{\tau_0}$ is a semi-Montel (=every bounded set is rel. compact) lcHs.
- $P(^mX)_{\|.\|}$ is a Banach space.

Aim

Characterise some dynamical properties of C_{φ} in terms of the symbol and find implications between this properties for both topologies in $\mathcal{P}(^{m}X)$.

Aim

Characterise some dynamical properties of C_{φ} in terms of the symbol and find implications between this properties for both topologies in $\mathcal{P}(^{m}X)$.

Dynamical properties:

- Power boundedness
- Cesàro boundedness
- Mean ergodicity
- Uniform mean ergodicity

Let E be a lcHs and $T: E \to E$ and operator. T^n denote the n-th iterate of T. The Cesàro means of T will be defined by

$$T_{[N]} := \frac{1}{N} \sum_{n=1}^{N} T^n.$$

Let E be a lcHs and $T: E \to E$ and operator. T^n denote the n-th iterate of T. The Cesàro means of T will be defined by

$$T_{[N]} := \frac{1}{N} \sum_{n=1}^{N} T^n.$$

Let $\mathcal{L}(E)$ denote the space of continuous linear operators from E to E.

Definition

An operator $T: E \rightarrow E$ is

- Power Bounded: $\{T^n\}$ is equicontinuous in $\mathcal{L}(E)$,
- Cesàro Bounded: $\{T_{[N]}\}$ is equicontinuous in $\mathcal{L}(E)$,

Let E be a lcHs and $T: E \to E$ and operator. T^n denote the n-th iterate of T. The Cesàro means of T will be defined by

$$T_{[N]} := \frac{1}{N} \sum_{n=1}^{N} T^n.$$

Let $\mathcal{L}(E)$ denote the space of continuous linear operators from E to E.

Definition

An operator $T: E \rightarrow E$ is

- Mean Ergodic (ME): $\{T_{[N]}\}$ converges in the topology of pointwise convergence of $\mathcal{L}(E)$ (strong operator topology when E is Banach),
- Uniformly Mean Ergodic (UME): $\{T_{[N]}\}$ converges in the topology of bounded convergence of $\mathcal{L}(E)$ (operator norm topology when E is Banach).

Proposition (Bonet, Domański)

Let U be a connected domain of holomorphy in \mathbb{C}^d and let $\varphi: U \to U$ a holomorphic mapping. T.F.A.E.:

- $oxed{a}$ $C_{arphi}: H(U)
 ightarrow H(U)$ is power bounded.
- **b** $C_{\varphi}: H(U) \rightarrow H(U)$ is uniformly mean ergodic.
- $C_{\varphi}: H(U) \to H(U)$ is mean ergodic.
- $\mathbf{d} \varphi$ has stable orbits.

Proposition (Bonet, Domański)

Let U be a connected domain of holomorphy in \mathbb{C}^d and let $\varphi: U \to U$ a holomorphic mapping. T.F.A.E.:

- **a** $C_{\varphi}: H(U) \to H(U)$ is power bounded.
- **b** $C_{\varphi}: H(U) \rightarrow H(U)$ is uniformly mean ergodic.
- $C_{\varphi}: H(U) \to H(U)$ is mean ergodic.
- $\mathbf{d} \ \varphi$ has stable orbits.

 φ has stable orbits if for each compact set K the following set is relatively compact

$$\bigcup_{n\in\mathbb{N}}\varphi^n(K).$$

Proposition (Bonet, Domański)

Let U be a connected domain of holomorphy in \mathbb{C}^d and let $\varphi: U \to U$ a holomorphic mapping. T.F.A.E.:

- **a** $C_{\varphi}: H(U) \to H(U)$ is power bounded.
- **b** $C_{\varphi}: H(U) \to H(U)$ is uniformly mean ergodic.
- $C_{\varphi}: H(U) \to H(U)$ is mean ergodic.
- $\mathbf{d} \varphi$ has stable orbits.

 φ has stable orbits if for each compact set K the following set is relatively compact

$$\bigcup_{n\in\mathbb{N}}\varphi^n(K).$$

<u>Fact:</u> H(U) is Fréchet-Montel, but $\mathcal{P}(^mX)_{\tau_0}$ is not barrelled and $\mathcal{P}(^mX)_{\|\cdot\|}$ is not reflexive (Montel) in general.

Preliminary results

Proposition

Let $\varphi: X \to X$ be a holomorphic mapping. The composition operator $C_{\varphi}: \mathcal{P}(^mX) \to \mathcal{P}(^mX)$ is well defined if and only if φ is linear.

Preliminary results

Proposition

Let $\varphi: X \to X$ be a holomorphic mapping. The composition operator $C_{\varphi}: \mathcal{P}(^mX) \to \mathcal{P}(^mX)$ is well defined if and only if φ is linear.

Remark

The result also holds if we only consider φ continuous.

Preliminary results

Proposition

Let $\varphi: X \to X$ be a holomorphic mapping. The composition operator $C_{\varphi}: \mathcal{P}(^mX) \to \mathcal{P}(^mX)$ is well defined if and only if φ is linear.

Remark

The result also holds if we only consider φ continuous.

Remark

The operator $C_{\varphi}: \mathcal{P}(^{m}X)_{\tau} \to \mathcal{P}(^{m}X)_{\tau}$ is continuous if $\tau = \tau_{0}$ or $\|\cdot\|$.

C_{arphi} power bounded in $\mathcal{P}(^{m}X)_{ au_{0}}$

Proposition

Let $\varphi: X \to X$ be a continuous linear map. Then $C_{\varphi}: \mathcal{P}(^mX)_{\tau_0} \to \mathcal{P}(^mX)_{\tau_0}$ is power bounded if and only if φ has stable orbits.

C_{arphi} power bounded in $\mathcal{P}(^{m}X)_{ au_{0}}$

Proposition

Let $\varphi: X \to X$ be a continuous linear map. Then $C_{\varphi}: \mathcal{P}(^mX)_{\tau_0} \to \mathcal{P}(^mX)_{\tau_0}$ is power bounded if and only if φ has stable orbits.

Lemma

Let $K \subseteq X$ be a compact set. Then

$$\widehat{\mathcal{K}}_{\mathcal{P}(^mX)}:=\{x\in X: |p(x)|\leq \sup_{y\in K}|p(y)|, \text{ for all } p\in \mathcal{P}(^mX)\}$$

is compact.

Power bounded \Rightarrow UME in $\mathcal{P}(^{m}X)_{\tau_0}$

Proposition (Bonet, de Pagter, Ricker)

Let E be a semi-Montel IcHs. Then every power bounded operator on E is uniformly mean ergodic.

Power bounded \Rightarrow UME in $\mathcal{P}(^{m}X)_{\tau_{0}}$

Proposition (Bonet, de Pagter, Ricker)

Let E be a semi-Montel IcHs. Then every power bounded operator on E is uniformly mean ergodic.

The space $\mathcal{P}(^{m}X)_{\tau_0}$ is semi-Montel.

Power bounded \Rightarrow UME in $\mathcal{P}(^{m}X)_{\tau_0}$

Proposition (Bonet, de Pagter, Ricker)

Let E be a semi-Montel IcHs. Then every power bounded operator on E is uniformly mean ergodic.

The space $\mathcal{P}(^{m}X)_{\tau_0}$ is semi-Montel.

Corollary

Let φ be a continuous linear mapping. If $C_{\varphi}: \mathcal{P}(^{m}X)_{\tau_{0}} \to \mathcal{P}(^{m}X)_{\tau_{0}}$ is power bounded, then it is uniformly mean ergodic.

C_{arphi} can be UME and NOT power bounded in $\mathcal{P}(^{m}X)_{ au_{0}}$

Theorem (Bermúdez, Bonilla, Müller, Peris)

There exist mean ergodic and mixing operators on ℓ_p for 1 .

Let 0 < α < 1/p, consider $\varphi_{\alpha}:\ell_{p}\to\ell_{p}$ defined by

$$\varphi_{\alpha}(x_1,x_2,\ldots)=(w_1x_2,w_2x_3,\ldots),$$

where $w_k = \left(\frac{k+1}{k}\right)^{\alpha}$.

C_{arphi} can be UME and NOT power bounded in $\mathcal{P}(^{m}X)_{ au_{0}}$

Theorem (Bermúdez, Bonilla, Müller, Peris)

There exist mean ergodic and mixing operators on ℓ_p for 1 .

Let 0 < α < 1/p, consider $\varphi_{\alpha}:\ell_{p}\to\ell_{p}$ defined by

$$\varphi_{\alpha}(x_1,x_2,\ldots)=(w_1x_2,w_2x_3,\ldots),$$

where $w_k = \left(\frac{k+1}{k}\right)^{\alpha}$.

Example

The composition operator $C_{\varphi_{\alpha}}: \mathcal{P}(^{1}\ell_{p})_{\tau_{0}} \to \mathcal{P}(^{1}\ell_{p})_{\tau_{0}}$ is uniformly mean ergodic, but not power bounded.

C_{φ} power bounded in $\mathcal{P}(^{m}X)_{\|\cdot\|}$

Proposition

Let $\varphi: X \to X$ be a continuous linear map. Then

 $C_{\varphi}: \mathcal{P}(^mX)_{\|\cdot\|} \to \mathcal{P}(^mX)_{\|\cdot\|}$ is power bounded if and only if φ is power bounded.

C_{φ} power bounded in $\mathcal{P}(^{m}X)_{\|\cdot\|}$

Proposition

Let $\varphi: X \to X$ be a continuous linear map. Then

 $C_{\varphi}: \mathcal{P}(^mX)_{\|\cdot\|} \to \mathcal{P}(^mX)_{\|\cdot\|}$ is power bounded if and only if φ is power bounded.

Proposition

Let $\varphi: X \to X$ be a continuous linear map such that

 $C_{\varphi}: \mathcal{P}(^mX)_{ au_0} o \mathcal{P}(^mX)_{ au_0}$ is power bounded. Then

 $C_{\varphi}: \mathcal{P}(^{m}X)_{\|.\|} \to \mathcal{P}(^{m}X)_{\|.\|}$ is power bounded.

C_{φ} power bounded in $\mathcal{P}(^{m}X)_{\|\cdot\|}$

Proposition

Let $\varphi: X \to X$ be a continuous linear map. Then

 $C_{\varphi}: \mathcal{P}(^mX)_{\|\cdot\|} \to \mathcal{P}(^mX)_{\|\cdot\|}$ is power bounded if and only if φ is power bounded.

Proposition

Let $\varphi: X \to X$ be a continuous linear map such that

 $C_{\varphi}: \mathcal{P}(^mX)_{\tau_0} \to \mathcal{P}(^mX)_{\tau_0}$ is power bounded. Then

 $C_{\varphi}: \mathcal{P}(^{m}X)_{\|\cdot\|} \to \mathcal{P}(^{m}X)_{\|\cdot\|}$ is power bounded.

The converse is not true in general. One example is C_{φ} on $\mathcal{P}(^mc_0)$ with the symbol

$$\varphi(x_1,x_2,\ldots)=(0,x_1,x_2,\ldots).$$

C_{arphi} Cesàro bounded in $\mathcal{P}(^{m}X)_{\|\cdot\|}$

Example

Fix $m \geq 2$ and $0 < \alpha < 1/m$. Then $C_{\varphi_{\alpha}} : \mathcal{P}(^m \ell_m)_{\|\cdot\|} \to \mathcal{P}(^m \ell_m)_{\|\cdot\|}$ is Cesàro bounded but neither power bounded nor mean ergodic.

Where

$$\varphi_{\alpha}(x_1,x_2,\ldots)=(w_1x_2,w_2x_3,\ldots),$$

with
$$w_k = \left(\frac{k+1}{k}\right)^{\alpha}$$
.

Power Bounded vs Mean Ergodic on $\mathcal{P}(^{m}X)_{\|\cdot\|}$

Consider the usual backward shift $\sigma: \ell_m \to \ell_m$

Example

 $C_{\sigma}: \mathcal{P}(^{m}\ell_{m})_{\|\cdot\|} \to \mathcal{P}(^{m}\ell_{m})_{\|\cdot\|}$ is power bounded but not mean ergodic.

Power Bounded vs Mean Ergodic on $\mathcal{P}(^{m}X)_{\|\cdot\|}$

Consider the usual backward shift $\sigma: \ell_m \to \ell_m$

Example

 $C_{\sigma}: \mathcal{P}({}^{m}\ell_{m})_{\|\cdot\|} \to \mathcal{P}({}^{m}\ell_{m})_{\|\cdot\|}$ is power bounded but not mean ergodic.

Fix $1 and let <math>0 < \beta < 1/p'$. Consider $\psi_{\beta} : \ell_{p} \to \ell_{p}$ defined by

$$\psi_{\beta}(x_1, x_2, \ldots) = (0, w_1x_1, w_2x_2, \ldots),$$

where $w_k = \left(\frac{k+1}{k}\right)^{\beta}$.

Power Bounded vs Mean Ergodic on $\mathcal{P}(^{m}X)_{\|\cdot\|}$

Consider the usual backward shift $\sigma: \ell_m \to \ell_m$

Example

 $C_{\sigma}: \mathcal{P}({}^{m}\ell_{m})_{\|\cdot\|} \to \mathcal{P}({}^{m}\ell_{m})_{\|\cdot\|}$ is power bounded but not mean ergodic.

Fix $1 and let <math>0 < \beta < 1/p'$. Consider $\psi_{\beta} : \ell_{p} \to \ell_{p}$ defined by

$$\psi_{\beta}(x_1,x_2,\ldots)=(0,w_1x_1,w_2x_2,\ldots),$$

where $w_k = \left(\frac{k+1}{k}\right)^{\beta}$.

Example

 $C_{\psi_{\beta}}: \mathcal{P}(^{1}\ell_{p})_{\|\cdot\|} \to \mathcal{P}(^{1}\ell_{p})_{\|\cdot\|}$ is mean ergodic, but not power bounded.

M. Maestre

Let $\varphi: X \to X$ be a continuous mapping. The composition operator $C_{\varphi}: \mathcal{P}(^mX) \to \mathcal{P}(^mX)$ is well defined if and only if φ is linear?

M. Maestre

Let $\varphi: X \to X$ be a continuous mapping. The composition operator $C_{\varphi}: \mathcal{P}(^mX) \to \mathcal{P}(^mX)$ is well defined if and only if φ is linear?

R. Aron

Let $\varphi: X \to X$ be a holomorphic mapping. The composition operator $C_{\varphi}: \mathcal{P}(^mX) \to \mathcal{P}(^{m\cdot 2}X)$ is well defined if and only if φ is a 2-homogeneous polynomial?

What can be said if $\varphi: X \to Y$?

Lemma

Let $\varphi: X \to Y$ be a continuous mapping. If there exists $m \in \mathbb{N}$ such that $\gamma^m \circ \varphi$ is holomorphic for every $\gamma \in Y^*$, then φ is holomorphic.

Lemma

Let $\varphi: X \to Y$ be a continuous mapping. If there exists $m \in \mathbb{N}$ such that $\gamma^m \circ \varphi$ is holomorphic for every $\gamma \in Y^*$, then φ is holomorphic.

Proposition

Let $\varphi: X \to Y$ be a continuous mapping, $m \in \mathbb{N}$ and $h \in \mathbb{N}_0$. The composition operator $C_{\varphi}: \mathcal{P}(^mY) \to \mathcal{P}(^hX)$ is well defined if and only if

- **1** $\varphi \in \mathcal{P}({}^kX,Y)$, when $h = k \cdot m$, $k \in \mathbb{N}_0$, or
- $\varphi \equiv 0$ otherwise.

References

- T. Bermúdez, A. Bonilla, V. Müller, and A. Peris. Cesàro bounded operators in Banach spaces. J. Anal. Math., (to appear).
- [2] J. Bonet and P. Domański.

A note on mean ergodic composition operators on spaces of holomorphic functions.

Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 105(2):389–396, 2011.

- [3] D. Jornet, D. Santacreu, and P. Sevilla-Peris. Mean ergodic composition operators in spaces of homogeneous polynomials.
 - J. Math. Anal. Appl., 483(1):123582, 2020.