The twisting, from C to K

Alberto Salguero-Alarcón

Universidad de Extremadura

V Congreso de Jóvenes Investigadores de la RSME Castellón, 27–31 de enero de 2020

This work has been partially supported by project IB16056 of the Junta de Extremadura and by an FPU(18/00990) grant from Ministerio de Ciencia, Innovación y Universidades.

Let K be a compact Hausdorff space.

$$C(K) = \{f: K \to \mathbb{R} \text{ continuous}\}, \ \|f\|_{\infty} = \max_{x \in K} |f(x)|$$

Let K be a compact Hausdorff space.

$$C(K) = \{f: K \to \mathbb{R} \text{ continuous}\}, \ \|f\|_{\infty} = \max_{x \in K} |f(x)|$$

For example:

Let K be a compact Hausdorff space.

$$C(K) = \{f: K \to \mathbb{R} \text{ continuous}\}, \ \|f\|_{\infty} = \max_{x \in K} |f(x)|$$

For example:

- C[0,1].
- **2** $C([0,1] \times [0,1])$.

Let K be a compact Hausdorff space.

$$C(K) = \{f: K \to \mathbb{R} \text{ continuous}\}, \ \|f\|_{\infty} = \max_{x \in K} |f(x)|$$

For example:

- C[0,1].
- **2** $C([0,1] \times [0,1])$.
- **3** $C(\Delta)$, where $\Delta = \{0,1\}^{\mathbb{N}}$ is the Cantor set.

Let K be a compact Hausdorff space.

$$C(K) = \{f: K \to \mathbb{R} \text{ continuous}\}, \ \|f\|_{\infty} = \max_{x \in K} |f(x)|$$

For example:

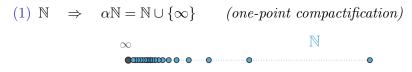
- C[0,1].
- **2** $C([0,1] \times [0,1])$.
- **3** $C(\Delta)$, where $\Delta = \{0,1\}^{\mathbb{N}}$ is the Cantor set.

Theorem (Miljutin)

Given two uncountable metrizable compacta K and L, then $C(K) \simeq C(L)$.

(1) N

 $(1) \ \mathbb{N} \quad \Rightarrow \quad \alpha \mathbb{N} = \mathbb{N} \cup \{\infty\} \qquad (one\text{-point compactification})$



If a sequence $x : \mathbb{N} \to \mathbb{R}$ is convergent, then it defines a continuous function $x : \alpha \mathbb{N} \to \mathbb{R}$.

If a sequence $x : \mathbb{N} \to \mathbb{R}$ is convergent, then it defines a continuous function $x : \alpha \mathbb{N} \to \mathbb{R}$.

Hence $c = C(\alpha \mathbb{N})$, and so $c_0 \simeq C(\alpha \mathbb{N})$.

$$(1) \ \mathbb{N} \quad \Rightarrow \quad \alpha \mathbb{N} = \mathbb{N} \cup \{\infty\} \qquad (\textit{one-point compactification})$$

If a sequence $x : \mathbb{N} \to \mathbb{R}$ is convergent, then it defines a continuous function $x : \alpha \mathbb{N} \to \mathbb{R}$.

Hence $c = C(\alpha \mathbb{N})$, and so $c_0 \simeq C(\alpha \mathbb{N})$.

▶ The same works for

$$c_0(\Gamma) = \{x : \Gamma \to \mathbb{R} : \forall \varepsilon > 0, \ |x(\gamma)| > \varepsilon \text{ for finite } \gamma \}$$

So $c_0(\Gamma) \simeq C(\alpha \Gamma)$.

(2) \mathbb{N}

$$(2) \mathbb{N} \quad \Rightarrow \quad \beta \mathbb{N}$$

(2) $\mathbb{N} \Rightarrow \beta \mathbb{N}$ Every (continuous) bounded function $x : \mathbb{N} \to \mathbb{R}$ has a unique extension $\tilde{x} : \beta \mathbb{N} \to \mathbb{R}$.

(2) $\mathbb{N} \Rightarrow \beta \mathbb{N}$

Every (continuous) bounded function $x : \mathbb{N} \to \mathbb{R}$ has a unique extension $\tilde{x} : \beta \mathbb{N} \to \mathbb{R}$.

So $\ell_{\infty} = C(\beta \mathbb{N})$.

(2) $\mathbb{N} \Rightarrow \beta \mathbb{N}$

Every (continuous) bounded function $x : \mathbb{N} \to \mathbb{R}$ has a unique extension $\tilde{x} : \beta \mathbb{N} \to \mathbb{R}$.

So
$$\ell_{\infty} = C(\beta \mathbb{N})$$
.

 $\beta \mathbb{N} = Stone\text{-}\check{C}ech\ compactification$

Now it's the time for some twisting

Now it's the time for some twisting

...sorry, not that one.

A twisted sum of Y and X is another space Z such that

A twisted sum of Y and X is another space Z such that

A twisted sum of Y and X is another space Z such that

- $1 Y \hookrightarrow Z.$
- **2** Z/Y = X.

A twisted sum of Y and X is another space Z such that

- $1 Y \hookrightarrow Z.$
- **2** Z/Y = X.
- Twisted sums are commonly represented by exact sequences:

$$0 \longrightarrow Y \stackrel{j}{\longrightarrow} Z \stackrel{q}{\longrightarrow} X \longrightarrow 0$$

A twisted sum of Y and X is another space Z such that

- $1 Y \hookrightarrow Z.$
- **2** Z/Y = X.
- Twisted sums are commonly represented by *exact sequences*:

$$0 \longrightarrow Y \stackrel{j}{\longrightarrow} Z \stackrel{q}{\longrightarrow} X \longrightarrow 0$$

• Is there any simple choice for Z?

A twisted sum of Y and X is another space Z such that

- $1 Y \hookrightarrow Z.$
- **2** Z/Y = X.
- Twisted sums are commonly represented by *exact sequences*:

$$0 \longrightarrow Y \stackrel{j}{\longrightarrow} Z \stackrel{q}{\longrightarrow} X \longrightarrow 0$$

• Is there any simple choice for Z?

$$Z = Y \oplus X$$
 , $\|(y, x)\| = \|y\|_Y + \|x\|_X$

A twisted sum of Y and X is another space Z such that

- $1 Y \hookrightarrow Z.$
- **2** Z/Y = X.
- Twisted sums are commonly represented by *exact sequences*:

$$0 \longrightarrow Y \stackrel{j}{\longrightarrow} Z \stackrel{q}{\longrightarrow} X \longrightarrow 0$$

• Is there any simple choice for Z?

$$Z = Y \oplus X$$
 , $||(y,x)|| = ||y||_Y + ||x||_X$

This produces the *trivial twisted sum*.

$$0 \longrightarrow Y \stackrel{j}{\longrightarrow} Z \stackrel{q}{\longrightarrow} X \longrightarrow 0$$

the following are equivalent:

- Z is the trivial twisted sum.
- \bullet Y is complemented in Z.

$$0 \longrightarrow Y \stackrel{j}{\longrightarrow} Z \stackrel{q}{\longrightarrow} X \longrightarrow 0$$

the following are equivalent:

- Z is the trivial twisted sum.
- \bullet Y is complemented in Z.

Let us write

$$\operatorname{Ext}(X,Y) = \frac{\{\text{twisted sums of } Y \text{ and } X\}}{\equiv}$$

$$0 \longrightarrow Y \stackrel{j}{\longrightarrow} Z \stackrel{q}{\longrightarrow} X \longrightarrow 0$$

the following are equivalent:

- Z is the trivial twisted sum.
- \bullet Y is complemented in Z.

Let us write

$$\operatorname{Ext}(X,Y) = \frac{\{\text{twisted sums of } Y \text{ and } X\}}{\equiv}$$

 $\operatorname{Ext}(X,Y) = 0 \iff$ no non-trivial twisted sums of Y and X

$$0 \longrightarrow Y \stackrel{j}{\longrightarrow} Z \stackrel{q}{\longrightarrow} X \longrightarrow 0$$

the following are equivalent:

- \bullet Z is the trivial twisted sum.
- \bullet Y is complemented in Z.

Let us write

$$\operatorname{Ext}(X,Y) = \frac{\{\text{twisted sums of } Y \text{ and } X\}}{\equiv}$$

 $\operatorname{Ext}(X,Y) = 0 \iff$ no non-trivial twisted sums of Y and X

Our question

What happens to Ext(X, Y) when X and Y are C(K)?

1 Injectivity of ℓ_{∞} :

$$0 \longrightarrow \ell_{\infty} \longrightarrow Z \longrightarrow X \longrightarrow 0$$

1 Injectivity of ℓ_{∞} :

$$0 \longrightarrow \ell_{\infty} \longrightarrow Z \longrightarrow X \longrightarrow 0$$

so
$$\operatorname{Ext}(X, \ell_{\infty}) = 0$$
.

1 Injectivity of ℓ_{∞} :

$$0 \longrightarrow \ell_{\infty} \longrightarrow Z \longrightarrow X \longrightarrow 0$$

so
$$\operatorname{Ext}(X, \ell_{\infty}) = 0$$
.

2 Sobczyk's theorem:

$$0 \longrightarrow c_0 \longrightarrow S \longrightarrow X \longrightarrow 0$$

For example...

1 Injectivity of ℓ_{∞} :

$$0 \longrightarrow \ell_{\infty} \longrightarrow Z \longrightarrow X \longrightarrow 0$$

so
$$\operatorname{Ext}(X, \ell_{\infty}) = 0$$
.

2 Sobczyk's theorem:

$$0 \longrightarrow c_0 \longrightarrow S \longrightarrow X \longrightarrow 0$$

so $\operatorname{Ext}(X, c_0) = 0$ if X is separable.

For example...

1 Injectivity of ℓ_{∞} :

$$0 \longrightarrow \ell_{\infty} \longrightarrow Z \longrightarrow X \longrightarrow 0$$

so
$$\operatorname{Ext}(X, \ell_{\infty}) = 0$$
.

2 Sobczyk's theorem:

$$0 \longrightarrow c_0 \longrightarrow S \longrightarrow X \longrightarrow 0$$

so $\operatorname{Ext}(X, c_0) = 0$ if X is separable.

ightharpoonup C(K) separable $\iff K$ metrizable.

For example...

1 Injectivity of ℓ_{∞} :

$$0 \longrightarrow \ell_{\infty} \longrightarrow Z \longrightarrow X \longrightarrow 0$$

so
$$\operatorname{Ext}(X, \ell_{\infty}) = 0$$
.

2 Sobczyk's theorem:

$$0 \longrightarrow c_0 \longrightarrow S \longrightarrow X \longrightarrow 0$$

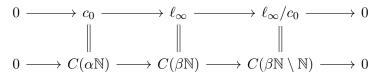
so $\operatorname{Ext}(X, c_0) = 0$ if X is separable.

- ightharpoonup C(K) separable $\iff K$ metrizable.
- ▶ In particular, if K is metrizable, $Ext(C(K), c_0) = 0$.

More examples

More examples

 $\mathbf{0}$ c₀ is not complemented in ℓ_{∞} :



More examples

 $\mathbf{0}$ c₀ is not complemented in ℓ_{∞} :

2 Pełczyński's exact sequence:

There exists an uncomplemented copy of C[0,1] into C[0,1] whose quotient is c_0 :

$$0 \longrightarrow C[0,1] \longrightarrow C[0,1] \longrightarrow c_0 \longrightarrow 0$$

...or at least, twisted sums of c_0 and C(K)?

...or at least, twisted sums of c_0 and C(K)?

Definition

A countable discrete extension of K is a compact space $K \cup \mathbb{N}$, where:

...or at least, twisted sums of c_0 and C(K)?

Definition

A countable discrete extension of K is a compact space $K \cup \mathbb{N}$, where:

• The topology on K remains the same.

...or at least, twisted sums of c_0 and C(K)?

Definition

A countable discrete extension of K is a compact space $K \cup \mathbb{N}$, where:

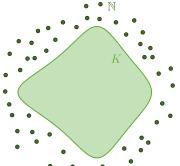
- The topology on K remains the same.
- N is isolated.

...or at least, twisted sums of c_0 and C(K)?

Definition

A countable discrete extension of K is a compact space $K \cup \mathbb{N}$, where:

- \bullet The topology on K remains the same.
- N is isolated.



 $C(K \cup \mathbb{N})$ is a twisted sum of c_0 and C(K).

 $C(K \cup \mathbb{N})$ is a twisted sum of c_0 and C(K).

Indeed,

$$Y = \{ f \in C(K \cup \mathbb{N}) : f|_K = 0 \}$$

verifies $Y \simeq c_0$ and $C(K \cup \mathbb{N})/Y \simeq C(K)$.

 $C(K \cup \mathbb{N})$ is a twisted sum of c_0 and C(K).

Indeed,

$$Y = \{ f \in C(K \cup \mathbb{N}) : f|_K = 0 \}$$

verifies $Y \simeq c_0$ and $C(K \cup \mathbb{N})/Y \simeq C(K)$.

• For example:

$$K = [0, 1] \quad \Rightarrow \quad L = [0, 1] \cup \{ \frac{-1}{n} : n \in \mathbb{N} \}$$

 $C(K \cup \mathbb{N})$ is a twisted sum of c_0 and C(K).

Indeed,

$$Y = \{ f \in C(K \cup \mathbb{N}) : f|_K = 0 \}$$

verifies $Y \simeq c_0$ and $C(K \cup \mathbb{N})/Y \simeq C(K)$.

• For example:

$$K = [0,1] \quad \Rightarrow \quad L = [0,1] \cup \{\frac{-1}{n} : n \in \mathbb{N}\}$$

L is a countable discrete extension of K, but C(L) is trivial.

 $C(K \cup \mathbb{N})$ is a twisted sum of c_0 and C(K).

Indeed,

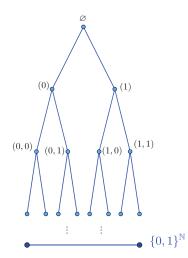
$$Y = \{ f \in C(K \cup \mathbb{N}) : f|_K = 0 \}$$

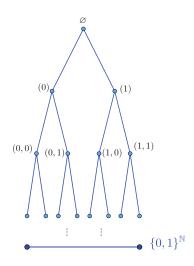
verifies $Y \simeq c_0$ and $C(K \cup \mathbb{N})/Y \simeq C(K)$.

• For example:

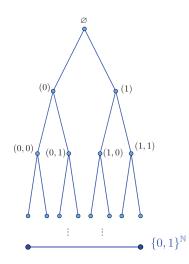
$$K = [0,1] \quad \Rightarrow \quad L = [0,1] \cup \{\frac{-1}{n} : n \in \mathbb{N}\}$$

L is a countable discrete extension of K, but C(L) is trivial.



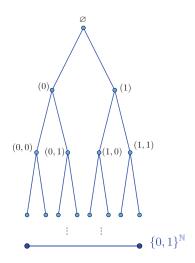


 $|\{\text{nodes}\}| = |\mathbb{N}|$, $|\{\text{branches}\}| = \mathfrak{c}$



$$|\{\text{nodes}\}| = |\mathbb{N}|$$
 , $|\{\text{branches}\}| = \mathfrak{c}$

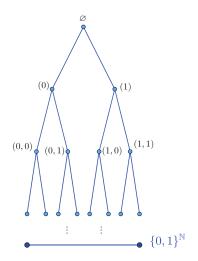
$$K = \{ \text{nodes} \} \cup \{ \text{branches} \} \cup \{ \infty \}$$



$$|\{\text{nodes}\}| = |\mathbb{N}|$$
 , $|\{\text{branches}\}| = \mathfrak{c}$

$$K = \{ \text{nodes} \} \cup \{ \text{branches} \} \cup \{ \infty \}$$

• Nodes are isolated.

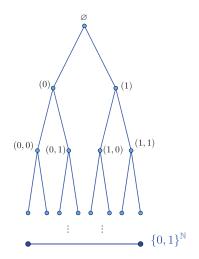


```
|\{\text{nodes}\}| = |\mathbb{N}| , |\{\text{branches}\}| = \mathfrak{c}
```

$$K = \{ \text{nodes} \} \cup \{ \text{branches} \} \cup \{ \infty \}$$

- Nodes are isolated.
- \bullet Basic nhoods of a branch x are

 $\{x\} \cup \{\text{almost all nodes of } x\}$



$$|\{\text{nodes}\}| = |\mathbb{N}|$$
 , $|\{\text{branches}\}| = \mathfrak{c}$

$$K = \{ \text{nodes} \} \cup \{ \text{branches} \} \cup \{ \infty \}$$

- Nodes are isolated.
- \bullet Basic nhoods of a branch x are

$$\{x\} \cup \{\text{almost all nodes of } x\}$$

K is a countable discrete extension of the "set of branches".

• Set of nodes: \mathbb{N} .

- Set of nodes: N.
- Set of branches: $\mathcal{A} \subset \mathcal{P}(\mathbb{N})$

- Set of nodes: N.
- Set of branches: $A \subset \mathcal{P}(\mathbb{N})$ so that $A \cap B$ is finite for every $A, B \in \mathcal{A}$

- Set of nodes: N.
- Set of branches: $\mathcal{A} \subset \mathcal{P}(\mathbb{N})$ so that $A \cap B$ is finite for every $A, B \in \mathcal{A} \Rightarrow Almost \ disjoint \ family.$

- Set of nodes: N.
- Set of branches: $A \subset \mathcal{P}(\mathbb{N})$ so that $A \cap B$ is finite for every $A, B \in \mathcal{A} \Rightarrow Almost disjoint family.$

Assume $|\mathcal{A}| = \mathfrak{c}$. The space

- Set of nodes: \mathbb{N} .
- Set of branches: $A \subset \mathcal{P}(\mathbb{N})$ so that $A \cap B$ is finite for every $A, B \in \mathcal{A} \Rightarrow Almost disjoint family.$

Assume $|\mathcal{A}| = \mathfrak{c}$. The space

$$K_{\mathcal{A}} = \mathbb{N} \cup \mathcal{A} \cup \{\infty\}$$

where

- Set of nodes: \mathbb{N} .
- Set of branches: $A \subset \mathcal{P}(\mathbb{N})$ so that $A \cap B$ is finite for every $A, B \in \mathcal{A} \Rightarrow Almost disjoint family.$

Assume $|\mathcal{A}| = \mathfrak{c}$. The space

$$K_{\mathcal{A}} = \mathbb{N} \cup \mathcal{A} \cup \{\infty\}$$

where

1 Points in N are isolated.

- Set of nodes: \mathbb{N} .
- Set of branches: $A \subset \mathcal{P}(\mathbb{N})$ so that $A \cap B$ is finite for every $A, B \in \mathcal{A} \Rightarrow Almost disjoint family.$

Assume $|\mathcal{A}| = \mathfrak{c}$. The space

$$K_{\mathcal{A}} = \mathbb{N} \cup \mathcal{A} \cup \{\infty\}$$

where

- \bullet Points in \mathbb{N} are isolated.
- **2** Basic nhoods of $A \in \mathcal{A}$ are $\{A\} \cup \{\text{almost every } n \in A\}$

- Set of nodes: \mathbb{N} .
- Set of branches: $\mathcal{A} \subset \mathcal{P}(\mathbb{N})$ so that $A \cap B$ is finite for every $A, B \in \mathcal{A} \Rightarrow Almost disjoint family.$

Assume $|\mathcal{A}| = \mathfrak{c}$. The space

$$K_{\mathcal{A}} = \mathbb{N} \cup \mathcal{A} \cup \{\infty\}$$

where

- 1 Points in N are isolated.
- **2** Basic nhoods of $A \in \mathcal{A}$ are $\{A\} \cup \{\text{almost every } n \in A\}$ is called the *Alexandrov-Urysohn* space generated by \mathcal{A} .

- Set of nodes: \mathbb{N} .
- Set of branches: $A \subset \mathcal{P}(\mathbb{N})$ so that $A \cap B$ is finite for every $A, B \in \mathcal{A} \Rightarrow Almost disjoint family.$

Assume $|\mathcal{A}| = \mathfrak{c}$. The space

$$K_{\mathcal{A}} = \mathbb{N} \cup \mathcal{A} \cup \{\infty\}$$

where

- \bigcirc Points in \mathbb{N} are isolated.
- **2** Basic nhoods of $A \in \mathcal{A}$ are $\{A\} \cup \{\text{almost every } n \in A\}$ is called the *Alexandrov-Urysohn* space generated by \mathcal{A} .

Proposition

- K_A is a countable discrete extension of $\alpha(\mathfrak{c})$.
- $C(K_A)$ is a non-trivial twisted sum of c_0 and $c_0(\mathfrak{c})$.

Some results and questions

— Cardinality of $Ext(c_0(\mathfrak{c}), c_0)$?

— Cardinality of $Ext(c_0(\mathfrak{c}), c_0)$?

Theorem 1 (Cabello, Castillo, Marciszewski, Plebanek, S-A.)

There are $2^{\mathfrak{c}}$ non-isomorphic twisted sums of c_0 and $c_0(\mathfrak{c})$. Moreover, all of them are of the form $C(K_A)$.

— Cardinality of $Ext(c_0(\mathfrak{c}), c_0)$?

Theorem 1 (Cabello, Castillo, Marciszewski, Plebanek, S-A.)

There are $2^{\mathfrak{c}}$ non-isomorphic twisted sums of c_0 and $c_0(\mathfrak{c})$. Moreover, all of them are of the form $C(K_{\mathcal{A}})$.

And this is because...

— Cardinality of $Ext(c_0(\mathfrak{c}), c_0)$?

Theorem 1 (Cabello, Castillo, Marciszewski, Plebanek, S-A.)

There are $2^{\mathfrak{c}}$ non-isomorphic twisted sums of c_0 and $c_0(\mathfrak{c})$. Moreover, all of them are of the form $C(K_{\mathcal{A}})$.

And this is because...

Lemma. A family K of non-homeomorphic separable compact spaces satisfying:

— Cardinality of $Ext(c_0(\mathfrak{c}), c_0)$?

Theorem 1 (Cabello, Castillo, Marciszewski, Plebanek, S-A.)

There are $2^{\mathfrak{c}}$ non-isomorphic twisted sums of c_0 and $c_0(\mathfrak{c})$. Moreover, all of them are of the form $C(K_{\mathcal{A}})$.

And this is because...

Lemma. A family K of non-homeomorphic separable compact spaces satisfying:

(1)
$$C(K) \simeq C(L)$$
.

— Cardinality of $Ext(c_0(\mathfrak{c}), c_0)$?

Theorem 1 (Cabello, Castillo, Marciszewski, Plebanek, S-A.)

There are $2^{\mathfrak{c}}$ non-isomorphic twisted sums of c_0 and $c_0(\mathfrak{c})$. Moreover, all of them are of the form $C(K_{\mathcal{A}})$.

And this is because...

Lemma. A family K of non-homeomorphic separable compact spaces satisfying:

- (1) $C(K) \simeq C(L)$.
- (2) $|M(K)| = \mathfrak{c}$.

— Cardinality of $Ext(c_0(\mathfrak{c}), c_0)$?

Theorem 1 (Cabello, Castillo, Marciszewski, Plebanek, S-A.)

There are $2^{\mathfrak{c}}$ non-isomorphic twisted sums of c_0 and $c_0(\mathfrak{c})$. Moreover, all of them are of the form $C(K_{\mathcal{A}})$.

And this is because...

Lemma. A family K of non-homeomorphic separable compact spaces satisfying:

- (1) $C(K) \simeq C(L)$.
- (2) $|M(K)| = \mathfrak{c}$.

must verify $|\mathcal{K}| \leq \mathfrak{c}$.

— Cardinality of $Ext(c_0(\mathfrak{c}), c_0)$?

Theorem 1 (Cabello, Castillo, Marciszewski, Plebanek, S-A.)

There are $2^{\mathfrak{c}}$ non-isomorphic twisted sums of c_0 and $c_0(\mathfrak{c})$. Moreover, all of them are of the form $C(K_{\mathcal{A}})$.

And this is because...

Lemma. A family K of non-homeomorphic separable compact spaces satisfying:

- (1) $C(K) \simeq C(L)$.
- $(2) |M(K)| = \mathfrak{c}.$

must verify $|\mathcal{K}| \leq \mathfrak{c}$.

 \mathfrak{F} Apply this to $\{K_{\mathcal{A}}\}$ for $|\mathcal{A}| = \mathfrak{c}$.

— Is there $Z \in Ext(C(K), c_0)$ such that Z is **not** a C(K)?

— Is there $Z \in Ext(C(K), c_0)$ such that Z is **not** a C(K)?

Theorem 2 (Castillo and González)

There is a twisted sum of c_0 and ℓ_{∞}/c_0 which cannot be complemented in any C(K) space.

— Is there $Z \in Ext(C(K), c_0)$ such that Z is **not** a C(K)?

Theorem 2 (Castillo and González)

There is a twisted sum of c_0 and ℓ_{∞}/c_0 which cannot be complemented in any C(K) space.

And this is because...

— Is there $Z \in Ext(C(K), c_0)$ such that Z is **not** a C(K)?

Theorem 2 (Castillo and González)

There is a twisted sum of c_0 and ℓ_{∞}/c_0 which cannot be complemented in any C(K) space.

And this is because...

• (Benyamini) There is a renorming X_n of ℓ_{∞}

$$0 \longrightarrow c_0 \longrightarrow X_n \longrightarrow \ell_{\infty}/c_0 \longrightarrow 0$$

that cannot be complemented in any C(K) with constant < n.

— Is there $Z \in Ext(C(K), c_0)$ such that Z is **not** a C(K)?

Theorem 2 (Castillo and González)

There is a twisted sum of c_0 and ℓ_∞/c_0 which cannot be complemented in any C(K) space.

And this is because...

• (Benyamini) There is a renorming X_n of ℓ_{∞}

$$0 \longrightarrow c_0 \longrightarrow X_n \longrightarrow \ell_{\infty}/c_0 \longrightarrow 0$$

that cannot be complemented in any C(K) with constant < n.

• $c_0(X_n)$ does the job.

— Is there $Z \in Ext(C(K), c_0)$ such that Z is **not** a C(K)?

Theorem 2 (Castillo and González)

There is a twisted sum of c_0 and ℓ_∞/c_0 which cannot be complemented in any C(K) space.

And this is because...

• (Benyamini) There is a renorming X_n of ℓ_{∞}

$$0 \longrightarrow c_0 \longrightarrow X_n \longrightarrow \ell_{\infty}/c_0 \longrightarrow 0$$

that cannot be complemented in any C(K) with constant < n.

- $c_0(X_n)$ does the job.
- But what about "normal" C(K)'s?

Recall that $\operatorname{Ext}(C(K), c_0) = 0$ for C(K) separable.

Recall that $\operatorname{Ext}(C(K), c_0) = 0$ for C(K) separable.

 \mathfrak{F} Conjecture (CCKY): If C(K) is non-separable, $\operatorname{Ext}(C(K), c_0) \neq 0$.

Recall that $\operatorname{Ext}(C(K), c_0) = 0$ for C(K) separable.

Theorem 3 (Avilés, Marciszewski, Plebanek)

[CH] For every C(K) non-separable, $Ext(C(K), c_0) \neq 0$.

Recall that $\operatorname{Ext}(C(K), c_0) = 0$ for C(K) separable.

Theorem 3 (Avilés, Marciszewski, Plebanek)

[CH] For every C(K) non-separable, $Ext(C(K), c_0) \neq 0$.

Theorem 4 (Marciszewski, Plebanek)

[MA + \neg CH] If $|\mathcal{A}| = \mathfrak{c}$, then $Ext(C(K_{\mathcal{A}}), c_0) = 0$.

THANK YOU FOR YOUR ATTENTION