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Spaces of continuous functions on a compact space

Let K be a compact Hausdorff space.

C(K) = {f : K → R continuous}, ‖f‖∞ = max
x∈K
|f(x)|

For example:

1 C[0, 1].

2 C
(
[0, 1]× [0, 1]

)
.

3 C(∆), where ∆ = {0, 1}N is the Cantor set.

Theorem (Miljutin)

Given two uncountable metrizable compacta K and L, then
C(K) ' C(L).
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More examples:

(1) N ⇒ αN = N ∪ {∞} (one-point compactification)

If a sequence x : N→ R is convergent, then it defines
a continuous function x : αN→ R.

Hence c = C(αN), and so c0 ' C(αN).

I The same works for

c0(Γ) = {x : Γ→ R : ∀ε > 0, |x(γ)| > ε for finite γ}

So c0(Γ) ' C(αΓ).
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More examples:

(2) N

⇒ βN
Every (continuous) bounded function x : N→ R has a unique
extension x̃ : βN→ R.

N R

βN

x

x̃

So `∞ = C(βN).

βN = Stone-Čech compactification
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Now it’s the time for some twisting

...sorry, not that one.
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Twisted sums of C(K)-spaces

A twisted sum of Y and X is another space Z such that

1 Y ↪→ Z.

2 Z/Y = X.

Twisted sums are commonly represented by exact sequences:

0 −→ Y
j−→ Z

q−→ X −→ 0

Is there any simple choice for Z?

Z = Y ⊕X , ‖(y, x)‖ = ‖y‖Y + ‖x‖X

This produces the trivial twisted sum.
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For an exact sequence

0 −→ Y
j−→ Z

q−→ X −→ 0

the following are equivalent:

Z is the trivial twisted sum.

Y is complemented in Z.

Let us write

Ext(X,Y ) =
{twisted sums of Y and X}

≡

Ext(X,Y ) = 0 ⇐⇒ no non-trivial twisted sums of Y and X

Our question

What happens to Ext(X,Y ) when X and Y are C(K)?
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For example...

1 Injectivity of `∞:

0 −→ `∞ −→ Z −→ X −→ 0

so Ext(X, `∞) = 0.

2 Sobczyk’s theorem:

0 −→ c0 −→ S −→ X −→ 0

so Ext(X, c0) = 0 if X is separable.

I C(K) separable ⇐⇒ K metrizable.

I In particular, if K is metrizable, Ext(C(K), c0) = 0.
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More examples

1 c0 is not complemented in `∞:

0 c0 `∞ `∞/c0 0

0 C(αN) C(βN) C(βN \ N) 0

2 Pe lczyński’s exact sequence:
There exists an uncomplemented copy of C[0, 1] into C[0, 1]
whose quotient is c0:

0 −→ C[0, 1] −→ C[0, 1] −→ c0 −→ 0
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How can we construct twisted sums of C(K) spaces?

...or at least, twisted sums of c0 and C(K)?

Definition

A countable discrete extension of K is a compact space K ∪ N, where:

The topology on K remains the same.

N is isolated.
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Proposition

C(K ∪ N) is a twisted sum of c0 and C(K).

Indeed,
Y = {f ∈ C(K ∪ N) : f |K = 0}

verifies Y ' c0 and C(K ∪ N)/Y ' C(K).

For example:

K = [0, 1] ⇒ L = [0, 1] ∪ {−1n : n ∈ N}

L is a countable discrete extension of K, but C(L) is trivial.

When C(K ∪ N) is not trivial?
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Dyadic tree

|{nodes}| = |N| , |{branches}| = c

K = {nodes} ∪ {branches} ∪ {∞}

Nodes are isolated.

Basic nhoods of a branch x are

{x} ∪ {almost all nodes of x}

K is a countable discrete extension
of the “set of branches”.
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Alexandrov-Urysohn spaces

Set of nodes: N.

Set of branches: A ⊂ P(N) so that A ∩B is finite
for every A,B ∈ A ⇒ Almost disjoint family.

Assume |A| = c. The space

KA = N ∪ A ∪ {∞}

where

1 Points in N are isolated.

2 Basic nhoods of A ∈ A are {A} ∪ {almost every n ∈ A}
is called the Alexandrov-Urysohn space generated by A.

Proposition

KA is a countable discrete extension of α(c).

C(KA) is a non-trivial twisted sum of c0 and c0(c).
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Some results and questions

— Cardinality of Ext(c0(c), c0)?

Theorem 1 (Cabello, Castillo, Marciszewski, Plebanek, S-A.)

There are 2c non-isomorphic twisted sums of c0 and c0(c).
Moreover, all of them are of the form C(KA).

And this is because...
Lemma. A family K of non-homeomorphic separable compact spaces
satisfying:

(1) C(K) ' C(L).

(2) |M(K)| = c.

must verify |K| ≤ c.

Apply this to {KA} for |A| = c.
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Non–C(K) twisted sums

— Is there Z ∈ Ext(C(K), c0)) such that Z is not a C(K)?

Theorem 2 (Castillo and González)

There is a twisted sum of c0 and `∞/c0 which cannot be complemented
in any C(K) space.

And this is because...

(Benyamini) There is a renorming Xn of `∞

0 −→ c0 −→ Xn −→ `∞/c0 −→ 0

that cannot be complemented in any C(K) with constant < n.

c0(Xn) does the job.

— But what about “normal” C(K)’s?
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The CCKY problem

Recall that Ext(C(K), c0) = 0 for C(K) separable.

Conjecture (CCKY): If C(K) is non-separable, Ext(C(K), c0) 6= 0.

Theorem 3 (Avilés, Marciszewski, Plebanek)

[CH] For every C(K) non-separable, Ext(C(K), c0) 6= 0.

Theorem 4 (Marciszewski, Plebanek)

[MA +¬CH] If |A| = c, then Ext(C(KA), c0) = 0.
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Thank you

for your attention
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