Strong norm attainment and applications

Abraham Rueda Zoca

(joint with B. Cascales, R. Chiclana, L. García-Lirola and M. Martín) V Congreso de Jóvenes Investigadores de la RESME

> Universidad de Granada Departamento de Análisis Matemático

Support

My research is supported by Vicerrectorado de Investigación y Transferencia de la Universidad de Granada in the program "Contratos puente", by MICINN (Spain) Grant PGC2018-093794-B-I00 (MCIU, AEI, FEDER, UE), by Junta de Andalucía Grant A-FQM-484-UGR18 and by Junta de Andalucía Grant FQM-0185.

Collaborators

Srongly norm-attaining Lipschitz maps

Given a **complete** metric space (M, d) with a distinguished point $0 \in M$ and a Banach space Y, we consider the space

$$\mathsf{Lip}_0(M,Y) := \{ f : M \to Y : f \text{ is Lipschitz}, f(0) = 0 \}$$

which is a Banach space when equipped with the norm

$$||f||_L := \sup \left\{ \frac{||f(x) - f(y)||}{d(x, y)} : x \neq y \right\}.$$

Srongly norm-attaining Lipschitz maps

Given a **complete** metric space (M, d) with a distinguished point $0 \in M$ and a Banach space Y, we consider the space

$$\mathsf{Lip}_0(M,Y) := \{ f : M \to Y : f \text{ is Lipschitz}, f(0) = 0 \}$$

which is a Banach space when equipped with the norm

$$||f||_L := \sup \left\{ \frac{||f(x) - f(y)||}{d(x, y)} : x \neq y \right\}.$$

We say that f strongly attains its norm if

$$||f||_L = \frac{||f(x) - f(y)||}{d(x, y)}$$

for some $x, y \in M$. We denote SNA(M, Y) the set of such maps.

Srongly norm-attaining Lipschitz maps

Given a **complete** metric space (M, d) with a distinguished point $0 \in M$ and a Banach space Y, we consider the space

$$\mathsf{Lip}_0(M,Y) := \{ f : M \to Y : f \text{ is Lipschitz}, f(0) = 0 \}$$

which is a Banach space when equipped with the norm

$$||f||_L := \sup \left\{ \frac{||f(x) - f(y)||}{d(x, y)} : x \neq y \right\}.$$

We say that f strongly attains its norm if

$$||f||_L = \frac{||f(x) - f(y)||}{d(x, y)}$$

for some $x, y \in M$. We denote SNA(M, Y) the set of such maps.

Problem

When $\overline{SNA(M, Y)} = Lip_0(M, Y)$?

Theorem (V. Kadets, M. Martín, M. Soloviova, 2016)

If M is geodesic (in particular, M = [0, 1]) then $\overline{SNA(M, \mathbb{R})} \neq Lip_0(M, \mathbb{R})$.

Theorem (V. Kadets, M. Martín, M. Soloviova, 2016)

If M is geodesic (in particular, M = [0, 1]) then $\overline{\mathsf{SNA}(M, \mathbb{R})} \neq \mathsf{Lip}_0(M, \mathbb{R})$.

Theorem (B. Cascales, R. Chiclana, L. García-Lirola, M. Martín and A.R.Z., 2019)

 $\overline{\mathsf{SNA}(M,\mathbb{R})} \neq \mathsf{Lip}_0(M,\mathbb{R})$ provided

• M is a length space (i.e. d(x, y) is the infimum of the length of curves joining x and y, for every x, y).

Theorem (V. Kadets, M. Martín, M. Soloviova, 2016)

If M is geodesic (in particular, M = [0, 1]) then $\overline{\mathsf{SNA}(M, \mathbb{R})} \neq \mathsf{Lip}_0(M, \mathbb{R})$.

Theorem (B. Cascales, R. Chiclana, L. García-Lirola, M. Martín and A.R.Z., 2019)

 $\overline{\mathsf{SNA}(M,\mathbb{R})} \neq \mathsf{Lip}_0(M,\mathbb{R})$ provided

- M is a length space (i.e. d(x, y) is the infimum of the length of curves joining x and y, for every x, y).
- $M \subset \mathbb{R}$ is compact and $\lambda(M) > 0$.

Theorem (V. Kadets, M. Martín, M. Soloviova, 2016)

If M is geodesic (in particular, M = [0,1]) then $\overline{\mathsf{SNA}(M,\mathbb{R})} \neq \mathsf{Lip}_0(M,\mathbb{R})$.

Theorem (B. Cascales, R. Chiclana, L. García-Lirola, M. Martín and A.R.Z., 2019)

 $\overline{\mathsf{SNA}(M,\mathbb{R})} \neq \mathsf{Lip}_0(M,\mathbb{R})$ provided

- M is a length space (i.e. d(x, y) is the infimum of the length of curves joining x and y, for every x, y).
- $M \subset \mathbb{R}$ is compact and $\lambda(M) > 0$.

Theorem (R. Chiclana, L. García-Lirola, M. Martín and A.R.Z., 2019)

 $\overline{\mathsf{SNA}(\mathbb{T},\mathbb{R})} \neq \mathsf{Lip}_0(\mathbb{T},\mathbb{R})$, where \mathbb{T} denotes the unit circle in \mathbb{R}^2 .

Lispchitz-free spaces

Given $m \in M$ we can define the evaluaton mapping $\delta_m \in \text{Lip}_0(M)^*$ by $\delta_m(f) = f(m)$ for all $f \in \text{Lip}_0(M)$.

Lispchitz-free spaces

Given $m \in M$ we can define the evaluaton mapping $\delta_m \in \operatorname{Lip}_0(M)^*$ by $\delta_m(f) = f(m)$ for all $f \in \operatorname{Lip}_0(M)$. If we define $\mathcal{F}(M) := \overline{\operatorname{span}}\{\delta_m : m \in M\}$ we get that

$$\mathcal{F}(M)^* = \operatorname{Lip}_0(M)$$
.

Linearisation of Lipschitz mappings

Given a metric space M, a Banach space Y and a Lispchitz map $f: M \longrightarrow Y$ such that f(0) = 0, there exists a bounded operator $\hat{f}: \mathcal{F}(M) \longrightarrow Y$ defined by

$$\hat{f}(\delta_m) := f(m)$$

Linearisation of Lipschitz mappings

Given a metric space M, a Banach space Y and a Lispchitz map $f: M \longrightarrow Y$ such that f(0) = 0, there exists a bounded operator $\hat{f}: \mathcal{F}(M) \longrightarrow Y$ defined by

$$\hat{f}(\delta_m) := f(m)$$

This operator \hat{f} satisfies that $\|\hat{f}\| = \|f\|_L$ and that the following diagram is commutative

Linearisation of Lipschitz mappings

Given a metric space M, a Banach space Y and a Lispchitz map $f: M \longrightarrow Y$ such that f(0) = 0, there exists a bounded operator $\hat{f}: \mathcal{F}(M) \longrightarrow Y$ defined by

$$\hat{f}(\delta_m) := f(m)$$

This operator \hat{f} satisfies that $\|\hat{f}\| = \|f\|_L$ and that the following diagram is commutative

From here it follows that the mapping

$$\begin{array}{ccc} \mathsf{Lip}_0(M,Y) & \longrightarrow & L(\mathcal{F}(M),Y), \\ f & \longmapsto & \hat{f} \end{array}$$

is an onto linear isometry, so $Lip_0(M, Y) = L(\mathcal{F}(M), Y)$.

Positive results I

Note that, if f strongly attains its norm at $x, y \in M$, then

$$\left\|\hat{f}\left(\frac{\delta(x)-\delta(y)}{d(x,y)}\right)\right\| = \|f\|_{L}$$

Therefore

$$\mathsf{SNA}(M, Y) \subset \mathsf{NA}(\mathcal{F}(M), Y),$$

Positive results I

Note that, if f strongly attains its norm at $x, y \in M$, then

$$\left\|\hat{f}\left(\frac{\delta(x)-\delta(y)}{d(x,y)}\right)\right\|=\|f\|_{L}$$

Therefore

$$\mathsf{SNA}(M, Y) \subset \mathsf{NA}(\mathcal{F}(M), Y),$$

and the inclusion may be strict (e.g. $SNA([0,1],\mathbb{R}) \subsetneq NA(\mathcal{F}([0,1]),\mathbb{R})$).

Positive results I

Note that, if f strongly attains its norm at $x, y \in M$, then

$$\left\|\hat{f}\left(\frac{\delta(x)-\delta(y)}{d(x,y)}\right)\right\| = \|f\|_{L}$$

Therefore

$$\mathsf{SNA}(M, Y) \subset \mathsf{NA}(\mathcal{F}(M), Y),$$

and the inclusion may be strict (e.g. $SNA([0,1],\mathbb{R}) \subsetneq NA(\mathcal{F}([0,1]),\mathbb{R})$).

Theorem (Godefroy, 2015)

Assume M is a compact metric space and $lip_0(M)^* = \mathcal{F}(M)$. Then $\underline{SNA(M,Y)} = NA(\mathcal{F}(M),Y)$ for all Y. Moreover, if Y is finite-dimensional, then $\underline{SNA(M,Y)} = Lip_0(M,Y)$.

Definition

Let X be a Banach space and $x \in S_X$. We say that x is:

Definition

Let X be a Banach space and $x \in S_X$. We say that x is:

• extreme point if $x = \frac{y+z}{2}$ for $y, z \in B_X$ then necessarily y = z = x.

Definition

Let *X* be a Banach space and $x \in S_X$. We say that *x* is:

- extreme point if $x = \frac{y+z}{2}$ for $y, z \in B_X$ then necessarily y = z = x.
- ② preserved extreme point if x is still an extreme point in X^{**} .

Definition

Let *X* be a Banach space and $x \in S_X$. We say that *x* is:

- extreme point if $x = \frac{y+z}{2}$ for $y, z \in B_X$ then necessarily y = z = x.
- ② preserved extreme point if x is still an extreme point in X^{**} .
- **1** denting point if for every $\varepsilon > 0$ there exists a slice $S = S(B_X, f, \alpha) := \{ y \in B_X : f(y) > 1 \alpha \}$ such that $x \in S$ and that diam $(S) < \varepsilon$.

Definition

Let *X* be a Banach space and $x \in S_X$. We say that *x* is:

- extreme point if $x = \frac{y+z}{2}$ for $y, z \in B_X$ then necessarily y = z = x.
- ② preserved extreme point if x is still an extreme point in X^{**} .
- **1** denting point if for every $\varepsilon > 0$ there exists a slice $S = S(B_X, f, \alpha) := \{ y \in B_X : f(y) > 1 \alpha \}$ such that $x \in S$ and that diam $(S) < \varepsilon$.
- **③** strongly exposed point if there exists a functional $f \in S_{X^*}$ such that f(x) = 1 and $\inf_{\alpha>0} \operatorname{diam} (S(B_X, f, \alpha)) = 0$.

Definition

Let *X* be a Banach space and $x \in S_X$. We say that *x* is:

- extreme point if $x = \frac{y+z}{2}$ for $y, z \in B_X$ then necessarily y = z = x.
- ② preserved extreme point if x is still an extreme point in X^{**} .
- **3** denting point if for every $\varepsilon > 0$ there exists a slice $S = S(B_X, f, \alpha) := \{ y \in B_X : f(y) > 1 \alpha \}$ such that $x \in S$ and that diam $(S) < \varepsilon$.
- **③** strongly exposed point if there exists a functional $f \in S_{X^*}$ such that f(x) = 1 and $\inf_{\alpha>0} \operatorname{diam} (S(B_X, f, \alpha)) = 0$.

It is known that

strongly exposed \Rightarrow denting \Rightarrow preserved extreme \Rightarrow extreme

Positive results II

 $\overline{SNA(M, Y)} = Lip_0(M, Y)$ regardless Y whenever:

Positive results II

 $\overline{SNA(M, Y)} = Lip_0(M, Y)$ regardless Y whenever:

- ② The unit ball of $\mathcal{F}(M)$ contains a norming uniformly strongly exposed set (in particular if $\mathcal{F}(M)$ has property α) (B. Cascales, R. Chiclana, L. García-Lirola, M. Martín and A. R. Z., 2019).

Positive results II

 $\overline{SNA(M, Y)} = Lip_0(M, Y)$ regardless Y whenever:

- ② The unit ball of $\mathcal{F}(M)$ contains a norming uniformly strongly exposed set (in particular if $\mathcal{F}(M)$ has property α) (B. Cascales, R. Chiclana, L. García-Lirola, M. Martín and A. R. Z., 2019).

In all the above cases a Banach space property (involving an abundance of strongly exposed points of the unit ball) of $\mathcal{F}(M)$ implies the (Lipschitz) property of density of the set of strongly norm-attaining Lipschitz maps.

If
$$\overline{SNA(M, Y)} = Lip_0(M, Y)$$
 for every Y :

If $\overline{SNA(M, Y)} = Lip_0(M, Y)$ for every Y:

• Does $\mathcal{F}(M)$ have the RNP?

If $\overline{SNA(M, Y)} = Lip_0(M, Y)$ for every Y:

- **1** Does $\mathcal{F}(M)$ have the RNP?
- ② is there any consequence on the structure of $\mathcal{F}(M)$?

If $\overline{\mathsf{SNA}(M,Y)} = \mathsf{Lip}_0(M,Y)$ for every Y:

- **①** Does $\mathcal{F}(M)$ have the RNP?
- ② is there any consequence on the structure of $\mathcal{F}(M)$?

Concerning Question 1 we have the following result:

Theorem (R. Chiclana, L. García-Lirola, M. Martín and A. R. Z., 2019)

There exists a compact metric space M such that:

If $\overline{\mathsf{SNA}(M,Y)} = \mathsf{Lip}_0(M,Y)$ for every Y:

- **①** Does $\mathcal{F}(M)$ have the RNP?
- ② is there any consequence on the structure of $\mathcal{F}(M)$?

Concerning Question 1 we have the following result:

Theorem (R. Chiclana, L. García-Lirola, M. Martín and A. R. Z., 2019)

There exists a compact metric space M such that:

- ② $\mathcal{F}(M)$ contains an isometric copy of $L_1([0,1])$ (in particular $\mathcal{F}(M)$ fails the RNP).

Theorem (R. Chiclana-L. García-Lirola, M. Martín, A. R. Z., 2019)

Assume that M is compact and than $\mathsf{SNA}(M,\mathbb{R})$ is dense in $\mathsf{Lip}_0(M,\mathbb{R})$. Then $\mathsf{SNA}(M,\mathbb{R})$ contains an **open** dense subset.

Theorem (R. Chiclana-L. García-Lirola, M. Martín, A. R. Z., 2019)

Assume that M is compact and than $\mathsf{SNA}(M,\mathbb{R})$ is dense in $\mathsf{Lip}_0(M,\mathbb{R})$. Then $\mathsf{SNA}(M,\mathbb{R})$ contains an **open** dense subset.

Proof. Let

$$A = \{ f \in \mathsf{Lip}_0(M, \mathbb{R}) : \sup_{d(x,y) < \varepsilon} \frac{f(x) - f(y)}{d(x,y)} < \|f\|_L \text{for some } \varepsilon > 0 \}$$

Theorem (R. Chiclana-L. García-Lirola, M. Martín, A. R. Z., 2019)

Assume that M is compact and than $\mathsf{SNA}(M,\mathbb{R})$ is dense in $\mathsf{Lip}_0(M,\mathbb{R})$. Then $\mathsf{SNA}(M,\mathbb{R})$ contains an **open** dense subset.

Proof. Let

$$A = \{ f \in \mathsf{Lip}_0(M, \mathbb{R}) : \sup_{d(x,y) < \varepsilon} \frac{f(x) - f(y)}{d(x,y)} < \|f\|_L \text{for some } \varepsilon > 0 \}$$

Clearly, A is open. Let us see that $SNA(M, \mathbb{R}) \subset \overline{A}$.

Theorem (R. Chiclana-L. García-Lirola, M. Martín, A. R. Z., 2019)

Assume that M is compact and than $\mathsf{SNA}(M,\mathbb{R})$ is dense in $\mathsf{Lip}_0(M,\mathbb{R})$. Then $\mathsf{SNA}(M,\mathbb{R})$ contains an **open** dense subset.

Proof. Let

$$A = \{ f \in \mathsf{Lip}_0(M,\mathbb{R}) : \sup_{d(x,y) < \varepsilon} \frac{f(x) - f(y)}{d(x,y)} < \|f\|_L \text{for some } \varepsilon > 0 \}$$

Clearly, A is open. Let us see that $SNA(M, \mathbb{R}) \subset \overline{A}$.

Take $\varepsilon > 0$ and f such that $\frac{f(x) - f(y)}{d(x,y)} = ||f||_L = 1$ for some $x, y \in M$.

Theorem (R. Chiclana-L. García-Lirola, M. Martín, A. R. Z., 2019)

Assume that M is compact and than $\mathsf{SNA}(M,\mathbb{R})$ is dense in $\mathsf{Lip}_0(M,\mathbb{R})$. Then $\mathsf{SNA}(M,\mathbb{R})$ contains an **open** dense subset.

Proof. Let

$$A = \{ f \in \mathsf{Lip}_0(M,\mathbb{R}) : \sup_{d(x,y) < \varepsilon} \frac{f(x) - f(y)}{d(x,y)} < \|f\|_L \text{for some } \varepsilon > 0 \}$$

Clearly, A is open. Let us see that $SNA(M, \mathbb{R}) \subset \overline{A}$.

Take $\varepsilon > 0$ and f such that $\frac{f(x) - f(y)}{d(x,y)} = ||f||_L = 1$ for some $x, y \in M$.

By Aliaga-Pernecká, we may assume that $\frac{\delta(x)-\delta(y)}{d(x,y)}\in \text{ext}(B_{\mathcal{F}(M)}).$

Theorem (R. Chiclana-L. García-Lirola, M. Martín, A. R. Z., 2019)

Assume that M is compact and than $\mathsf{SNA}(M,\mathbb{R})$ is dense in $\mathsf{Lip}_0(M,\mathbb{R})$. Then $\mathsf{SNA}(M,\mathbb{R})$ contains an **open** dense subset.

Proof. Let

$$A = \{ f \in \mathsf{Lip}_0(M, \mathbb{R}) : \sup_{d(x,y) < \varepsilon} \frac{f(x) - f(y)}{d(x,y)} < \|f\|_{\mathcal{L}} \text{for some } \varepsilon > 0 \}$$

Clearly, A is open. Let us see that $SNA(M, \mathbb{R}) \subset \overline{A}$.

Take $\varepsilon > 0$ and f such that $\frac{f(x) - f(y)}{d(x,y)} = ||f||_L = 1$ for some $x, y \in M$.

By Aliaga-Pernecká, we may assume that $\frac{\delta(x)-\delta(y)}{d(x,y)} \in \text{ext}(B_{\mathcal{F}(M)})$.

Now, by Aliaga-Guirao and García-Lirola, Petitjean, Procházka and R.Z.

$$\operatorname{ext}(B_{\mathcal{F}(M)}) = \operatorname{ext}(B_{\mathcal{F}(M)^{**}}) \cap \mathcal{F}(M) = \operatorname{dent}(B_{\mathcal{F}(M)})$$

Therefore, there is $g \in S_{\text{Lip}_0(M)}$ and $\beta > 0$ such that $\frac{g(x) - g(y)}{d(x,y)} > 1 - \beta$ and diam $\{\mu \in B_{\mathcal{F}(M)} : g(\mu) > 1 - \beta\} < \varepsilon$.

Therefore, there is $g \in S_{\text{Lip}_0(M)}$ and $\beta > 0$ such that $\frac{g(x) - g(y)}{d(x,y)} > 1 - \beta$ and diam $\{\mu \in B_{\mathcal{F}(M)} : g(\mu) > 1 - \beta\} < \varepsilon$. Take $h = f + \varepsilon g$. Then $\|f - h\|_I = \varepsilon$. We claim that $h \in A$.

Therefore, there is $g \in S_{\operatorname{Lip}_0(M)}$ and $\beta > 0$ such that $\frac{g(x) - g(y)}{d(x,y)} > 1 - \beta$ and diam $\{\mu \in B_{\mathcal{F}(M)} : g(\mu) > 1 - \beta\} < \varepsilon$. Take $h = f + \varepsilon g$. Then $\|f - h\|_L = \varepsilon$. We claim that $h \in A$. Note that

$$||h||_{L} \geq 1 + \varepsilon \frac{g(x) - g(y)}{d(x, y)} > 1 + \varepsilon (1 - \beta).$$

13/16

Therefore, there is $g \in S_{\text{Lip}_0(M)}$ and $\beta > 0$ such that $\frac{g(x) - g(y)}{d(x,y)} > 1 - \beta$ and diam $\{\mu \in B_{\mathcal{F}(M)} : g(\mu) > 1 - \beta\} < \varepsilon$.

Take $h = f + \varepsilon g$. Then $||f - h||_L = \varepsilon$. We claim that $h \in A$.

Note that

$$\|h\|_{L} \geq 1 + \varepsilon \frac{g(x) - g(y)}{d(x, y)} > 1 + \varepsilon (1 - \beta).$$

Assume that

$$\frac{h(u)-h(v)}{d(u,v)}>1+\varepsilon(1-\beta)$$

Therefore, there is $g \in S_{\text{Lip}_0(M)}$ and $\beta > 0$ such that $\frac{g(x) - g(y)}{d(x,y)} > 1 - \beta$ and diam $\{\mu \in B_{\mathcal{F}(M)} : g(\mu) > 1 - \beta\} < \varepsilon$.

Take $h = f + \varepsilon g$. Then $||f - h||_L = \varepsilon$. We claim that $h \in A$.

Note that

$$\|h\|_{L} \geq 1 + \varepsilon \frac{g(x) - g(y)}{d(x, y)} > 1 + \varepsilon (1 - \beta).$$

Assume that

$$\frac{h(u)-h(v)}{d(u,v)}>1+\varepsilon(1-\beta)$$

Then $1 + \varepsilon(1 - \beta) < 1 + \varepsilon \frac{g(u) - g(v)}{d(u, v)}$.

Therefore, there is $g \in S_{\text{Lip}_0(M)}$ and $\beta > 0$ such that $\frac{g(x) - g(y)}{d(x,y)} > 1 - \beta$ and diam $\{\mu \in B_{\mathcal{F}(M)} : g(\mu) > 1 - \beta\} < \varepsilon$.

Take $h = f + \varepsilon g$. Then $||f - h||_L = \varepsilon$. We claim that $h \in A$.

Note that

$$\|h\|_{L} \geq 1 + \varepsilon \frac{g(x) - g(y)}{d(x, y)} > 1 + \varepsilon (1 - \beta).$$

Assume that

$$\frac{h(u)-h(v)}{d(u,v)}>1+\varepsilon(1-\beta)$$

Then
$$1 + \varepsilon(1 - \beta) < 1 + \varepsilon \frac{g(u) - g(v)}{d(u, v)}$$
.

So,
$$g\left(\frac{\delta(u)-\delta(v)}{d(u,v)}\right) > 1-\beta$$
 and thus $\|\frac{\delta(u)-\delta(v)}{d(u,v)} - \frac{\delta(x)-\delta(y)}{d(x,y)}\| < \varepsilon$.

13/16

Therefore, there is $g \in S_{\text{Lip}_0(M)}$ and $\beta > 0$ such that $\frac{g(x) - g(y)}{d(x,y)} > 1 - \beta$ and diam $\{\mu \in B_{\mathcal{F}(M)} : g(\mu) > 1 - \beta\} < \varepsilon$.

Take $h = f + \varepsilon g$. Then $||f - h||_L = \varepsilon$. We claim that $h \in A$.

Note that

$$\|h\|_{L} \geq 1 + \varepsilon \frac{g(x) - g(y)}{d(x, y)} > 1 + \varepsilon (1 - \beta).$$

Assume that

$$\frac{h(u)-h(v)}{d(u,v)}>1+\varepsilon(1-\beta)$$

Then
$$1 + \varepsilon(1 - \beta) < 1 + \varepsilon \frac{g(u) - g(v)}{d(u, v)}$$
.

So,
$$g\left(\frac{\delta(u)-\delta(v)}{d(u,v)}\right) > 1-\beta$$
 and thus $\|\frac{\delta(u)-\delta(v)}{d(u,v)}-\frac{\delta(x)-\delta(y)}{d(x,y)}\|<\varepsilon$.

A result of García-Lirola thesis implies that $d(u, v) \ge (1 - 2\varepsilon)d(x, y)$, that is, h does not approximate its norm at arbitrarily close points.

$$A = \{f \in \mathsf{Lip}_0(M,\mathbb{R}) : \sup_{d(x,y) < \varepsilon} \frac{f(x) - f(y)}{d(x,y)} < \|f\|_L \text{for some } \varepsilon > 0\}$$

$$A = \{ f \in \mathsf{Lip}_0(M, \mathbb{R}) : \sup_{d(x,y) < \varepsilon} \frac{f(x) - f(y)}{d(x,y)} < \|f\|_L \text{for some } \varepsilon > 0 \}$$

By an adaptation of a result of Y. Ivakhno, V. Kadets and D. Werner (2007) we get that every element $f \in A$ strongly attain its norm at a strongly exposed point.

$$A = \{ f \in \mathsf{Lip}_0(M,\mathbb{R}) : \sup_{d(x,y) < \varepsilon} \frac{f(x) - f(y)}{d(x,y)} < \|f\|_L \text{for some } \varepsilon > 0 \}$$

By an adaptation of a result of Y. Ivakhno, V. Kadets and D. Werner (2007) we get that every element $f \in A$ strongly attain its norm at a strongly exposed point. Hence:

Corollary

If M is compact and $\overline{\mathsf{SNA}(M,\mathbb{R})}$ is dense in $\mathsf{Lip}_0(M,R)$, then

$$B_{\mathcal{F}(M)} = \overline{co}(\operatorname{strexp}(B_{\mathcal{F}(M)})).$$

$$A = \{ f \in \mathsf{Lip}_0(M, \mathbb{R}) : \sup_{d(x,y) < \varepsilon} \frac{f(x) - f(y)}{d(x,y)} < \|f\|_{\mathcal{L}} \text{for some } \varepsilon > 0 \}$$

By an adaptation of a result of Y. Ivakhno, V. Kadets and D. Werner (2007) we get that every element $f \in A$ strongly attain its norm at a strongly exposed point. Hence:

Corollary

If M is compact and $SNA(M, \mathbb{R})$ is dense in $Lip_0(M, R)$, then

$$B_{\mathcal{F}(M)} = \overline{co}(\operatorname{strexp}(B_{\mathcal{F}(M)})).$$

The converse is not true. Every element of the form $\frac{\delta_x - \delta_y}{d(x,y)}$ is a strongly exposed point in $\mathcal{F}(\mathbb{T})$ and, as we have seen, $\mathsf{SNA}(\mathbb{T},\mathbb{R})$ is not dense in $\mathsf{Lip}_0(\mathbb{T},\mathbb{R})$.

References

R. J. Aliaga and A. J. Guirao, On the preserved extremal structure of Lipschitz-free spaces, Studia Math. 245 (2019), 1–14.

R. J. Aliaga and E. Pernecká, Supports and extreme points in Lipschitz-free spaces, Rev. Mat. Iberoam. (to appear). Available at arXiv.org with reference arXiv:1810.11278.

B. Cascales, R. Chiclana, L. García-Lirola, M. Martín and A. Rueda Zoca, On strongly norm attaining Lipschitz maps, J. Funct. Anal. 277 (2019), 1677-1717.

R. Chiclana, L. García-Lirola, M. Martín and A. Rueda Zoca, Examples and applications of the density of strongly norm attaining Lipschitz maps, submitted to Rev. Mat. Iberoamericana.

G. Godefroy, A survey on Lipschitz-free Banach spaces, Comment. Math. **55**, 2 (2015), 89–118.

V. Kadets, M. Martín, and M. Soloviova, Norm-attaining Lipschitz functionals, Banach J. Math. Anal. 10 (2016), 621–637.

Thank you

