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Srongly norm-attaining Lipschitz maps
Given a complete metric space (M,d) with a distinguished point 0 ∈ M and a
Banach space Y , we consider the space

Lip0(M,Y ) := {f : M → Y : f is Lipschitz, f (0) = 0}

which is a Banach space when equipped with the norm

‖f‖L := sup

{
‖f (x)− f (y)‖

d(x , y)
: x 6= y

}
.

We say that f strongly attains its norm if

‖f‖L =
‖f (x)− f (y)‖

d(x , y)

for some x , y ∈ M. We denote SNA(M,Y ) the set of such maps.

Problem
When SNA(M,Y ) = Lip0(M,Y )?
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Negative results

Theorem (V. Kadets, M. Martín, M. Soloviova, 2016)
If M is geodesic (in particular, M = [0,1]) then SNA(M,R) 6= Lip0(M,R).

Theorem (B. Cascales, R. Chiclana, L. García-Lirola, M. Martín
and A.R.Z., 2019)
SNA(M,R) 6= Lip0(M,R) provided

M is a length space (i.e. d(x , y) is the infimum of the length of curves
joining x and y, for every x , y).
M ⊂ R is compact and λ(M) > 0.

Theorem (R. Chiclana, L. García-Lirola, M. Martín and A.R.Z.,
2019)
SNA(T,R) 6= Lip0(T,R), where T denotes the unit circle in R2.
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Lispchitz-free spaces

Given m ∈ M we can define the evaluaton mapping δm ∈ Lip0(M)∗ by
δm(f ) = f (m) for all f ∈ Lip0(M).

If we define F(M) := span{δm : m ∈ M} we
get that

F(M)∗ = Lip0(M).
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Linearisation of Lipschitz mappings

Given a metric space M, a Banach space Y and a Lispchitz map f : M −→ Y
such that f (0) = 0, there exists a bounded operator f̂ : F(M) −→ Y defined by

f̂ (δm) := f (m)

This operator f̂ satisfies that ‖f̂‖ = ‖f‖L and that the following diagram is
conmutative

M f //� _

δ

��

Y

F(M)
f̂

<<

From here it follows that the mapping

Lip0(M,Y ) −→ L(F(M),Y ),

f 7−→ f̂

is an onto linear isometry, so Lip0(M,Y ) = L(F(M),Y ).
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Positive results I

Note that, if f strongly attains its norm at x , y ∈ M, then∥∥∥∥f̂
(
δ(x)− δ(y)

d(x , y)

)∥∥∥∥ = ‖f‖L

Therefore
SNA(M,Y ) ⊂ NA(F(M),Y ),

and the inclusion may be strict (e.g. SNA([0,1],R) $ NA(F([0,1]),R)).

Theorem (Godefroy, 2015)
Assume M is a compact metric space and lip0(M)∗ = F(M). Then
SNA(M,Y ) = NA(F(M),Y ) for all Y . Moreover, if Y is finite-dimensional, then
SNA(M,Y ) = Lip0(M,Y ).
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A quick survey on extremal notions

Definition
Let X be a Banach space and x ∈ SX . We say that x is:

1 extreme point if x = y+z
2 for y , z ∈ BX then necessarily y = z = x .

2 preserved extreme point if x is still an extreme point in X ∗∗.
3 denting point if for every ε > 0 there exists a slice

S = S(BX , f , α) := {y ∈ BX : f (y) > 1− α} such that x ∈ S and that
diam (S) < ε.

4 strongly exposed point if there exists a functional f ∈ SX∗ such that
f (x) = 1 and inf

α>0
diam (S(BX , f , α)) = 0.

It is known that

strongly exposed⇒ denting⇒ preserved extreme⇒ extreme
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Positive results II

SNA(M,Y ) = Lip0(M,Y ) regardless Y whenever:
1 F(M) has the RNP (L. García-Lirola, C. Petitjean, A. Procházka, A. R. Z.,

2018).

2 The unit ball of F(M) contains a norming uniformly strongly exposed set
(in particular if F(M) has property α) (B. Cascales, R. Chiclana, L.
García-Lirola, M. Martín and A. R. Z., 2019).

In all the above cases a Banach space property (involving an abundance of
strongly exposed points of the unit ball) of F(M) implies the (Lipschitz)
property of density of the set of strongly norm-attaining Lipschitz maps.
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Questions

If SNA(M,Y ) = Lip0(M,Y ) for every Y :

1 Does F(M) have the RNP?
2 is there any consequence on the structure of F(M)?

Concerning Question 1 we have the following result:

Theorem (R. Chiclana, L. García-Lirola, M. Martín and A. R. Z.,
2019)
There exists a compact metric space M such that:

1 SNA(M,Y ) = Lip0(M,Y ) for every Y .
2 F(M) contains an isometric copy of L1([0,1]) (in particular F(M) fails the

RNP).
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Strongly exposed points I

Theorem (R. Chiclana-L. García-Lirola,M. Martín, A. R. Z., 2019)
Assume that M is compact and than SNA(M,R) is dense in Lip0(M,R). Then
SNA(M,R) contains an open dense subset.

Proof. Let

A = {f ∈ Lip0(M,R) : sup
d(x,y)<ε

f (x)− f (y)
d(x , y)

< ‖f‖Lfor some ε > 0}

Clearly, A is open. Let us see that SNA(M,R) ⊂ A.
Take ε > 0 and f such that f (x)−f (y)

d(x,y) = ‖f‖L = 1 for some x , y ∈ M.

By Aliaga-Pernecká, we may assume that δ(x)−δ(y)d(x,y) ∈ ext(BF(M)).
Now, by Aliaga-Guirao and García-Lirola, Petitjean, Procházka and R.Z.

ext(BF(M)) = ext(BF(M)∗∗) ∩ F(M) = dent(BF(M))
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Strongly exposed points II

Therefore, there is g ∈ SLip0(M) and β > 0 such that g(x)−g(y)
d(x,y) > 1− β and

diam {µ ∈ BF(M) : g(µ) > 1− β} < ε.

Take h = f + εg. Then ‖f − h‖L = ε. We claim that h ∈ A.
Note that

‖h‖L ≥ 1 + ε
g(x)− g(y)

d(x , y)
> 1 + ε(1− β).

Assume that
h(u)− h(v)

d(u, v)
> 1 + ε(1− β)

Then 1 + ε(1− β) < 1 + ε g(u)−g(v)
d(u,v) .

So, g
(
δ(u)−δ(v)

d(u,v)

)
> 1− β and thus ‖ δ(u)−δ(v)d(u,v) −

δ(x)−δ(y)
d(x,y) ‖ < ε.

A result of García-Lirola thesis implies that d(u, v) ≥ (1− 2ε)d(x , y), that is, h
does not approximate its norm at arbitrarily close points.
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Strongly exposed points III

A = {f ∈ Lip0(M,R) : sup
d(x,y)<ε

f (x)− f (y)
d(x , y)

< ‖f‖Lfor some ε > 0}

By an adaptation of a result of Y. Ivakhno, V. Kadets and D. Werner (2007) we
get that every element f ∈ A strongly attain its norm at a strongly exposed
point. Hence:

Corollary
If M is compact and SNA(M,R) is dense in Lip0(M,R), then

BF(M) = co(strexp(BF(M))).

The converse is not true. Every element of the form δx−δy
d(x,y) is a strongly

exposed point in F(T) and, as we have seen, SNA(T,R) is not dense in
Lip0(T,R).
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