ESTIMATES OF LACUNARY NORMS OF PRODUCTS OF POLYNOMIALS

Daniel L. Rodríguez-Vidanes

UCM. MADRID, ESPAÑA

JOINT WORK WITH G. ARAÚJO, P. H. ENFLO, G. A.

MUÑOZ-FERNÁNDEZ AND J. B. SEOANE-SEPÚLVEDA

V Congreso Jóvenes Investigadores de la RSME 30 January 2019

Background

Conjecture (The invariant subspace problem)

Let X be a complex Banach space of dimension > 1. If $T: X \to X$ is a bounded linear operator, then X has a closed non-trivial T-invariant subspace.

Background

Conjecture (The invariant subspace problem)

Let X be a complex Banach space of dimension > 1. If $T: X \to X$ is a bounded linear operator, then X has a closed non-trivial T-invariant subspace.

Theorem (Enflo - 1987)

There exists a Banach space X and a bounded linear operator $T: X \to X$ such that X does not have non-trivial T-invariant subspaces.

Estimates on norms of polynomials

Remark (The technique)

One of the many ideas that Enflo used was the "concentration of low degree polynomials" by using a series of estimates on the products of polynomials. For instance, if P and Q are polynomials of degrees n_1 and n_2 , respectively, then there exists $C(n_1, n_2)$ such that

$$|PQ| \geq C(n_1, n_2)|P||Q|$$

where $|\cdot|$ denotes the sum of the absolute values of the coefficients of a polynomial and $C(n_1, n_2)$ is independent on the number of variables.

Estimates on norms of polynomials

Definition (Concentration of a polynomial at low degrees)

In one variable, let $q=\sum_{j\geq 0}a_jz^j$ be a polynomial with complex coefficients and $0\leq d\leq 1$. We say that q has concentration d, at degree at most k, if

$$\sum_{j=0}^k |a_j| \ge d \sum_{j \ge 0} |a_j|.$$

Estimates on norms of polynomials

Definition (Concentration of a polynomial at low degrees)

In one variable, let $q=\sum_{j\geq 0}a_jz^j$ be a polynomial with complex coefficients and $0\leq d\leq 1$. We say that q has concentration d, at degree at most k, if

$$\sum_{j=0}^k |a_j| \ge d \sum_{j \ge 0} |a_j|.$$

Remark

Extension of the definition of concentration of polynomials at low degrees to other norms defined on the vector spaces of homogeneous polynomials.

Standard polynomial norms

Notation

Let $q = \sum_{j>0} a_j z^j$. We consider the following norms:

- (i) $||q||_1 = \sum_{j\geq 0} |a_j|$,
- (ii) $||q||_{\sup} = \sup_{|z|=1} |q(z)|$,
- (iii) $||q||_2 = \left(\sum_{j\geq 0} |a_j|^2\right)^{\frac{1}{2}}$,
- (iv) $||q||_{L_1} = \frac{1}{2\pi} \int_{|z|=1} |q(z)| d\theta$.

Notice that $\|q\|_1 \ge \|q\|_2 \ge \|q\|_{L_1} \ge \|q\|_{\sup}$. Also let us denote for $n \in \mathbb{N}$,

$$q|_n = \sum_{j=0}^n a_j z^j.$$

Lacunary norms

Definition (Lacunary sets)

- (a) We say that a singleton containing a non-negative integer is a 0-lacunary subset of the integers.
- (b) Inductively, given an integer k, we define a k-lacunary subset of the integers as follows:
 E is a k-lacunary subset of the integers if the intersection between E and a translate of E is never bigger than a (k-1)-lacunary subset of E.

We denote the set of all k-lacunary subset of the integers by Ω_k .

Lacunary norms

Example

- (i) The infinite set $\{2^k \colon k \in \mathbb{N}\}$ is 1-lacunary and the infinite set $\{2^k \colon k \in \mathbb{N}\} \cup \{3^k \colon k \in \mathbb{N}\}$ is not 1-lacunary.
- (ii) Given positive integers n and k, then

$$A_k^a := \{a + in\}_{i=0}^k \in \Omega_k \setminus \Omega_{k-1}$$

for all integers $a \ge 0$.

Lacunary norms

Definition (Lacunary norm)

Let $q = \sum_{j \geq 0} a_j z^j$, we define the k-lacunary norm as

$$\|q\|_{k-\mathrm{lac}} = \sup_{E \in \Omega_k} \{\|q|_E\|_1\}.$$

Notice that $||q||_1 \ge ||q||_{k-\text{lac}}$ for every $k \in \mathbb{N}$.

Auxiliary result

Proposition (Beauzamy and Enflo - 1985)

Given n, C, K, there is $\alpha = \alpha$ (n, C, K) > 0 such that for all h and q satisfying

$$||h||_{\sup} \le K||h||_2$$

 $||q||_2 \le C||q|_n||_2$,

we have

$$||hq||_{L_1} \geq \alpha (n, C, K) ||h||_2 ||q||_2.$$

Main result

Theorem (Araújo, Enflo, Muñoz, Rodríguez and Seoane - 2019/2020)

Given n, C, K, i, and Q > 1, there is a $\beta = \beta$ (n, C, K, Q, i) > 0 such that for all polynomials h and q satisfying

$$\begin{split} \|h\|_{i-\text{lac}} &\leq Q |h_0|, \\ \|h\|_1 &\leq K \|h\|_{i-\text{lac}}, \\ \|q\|_1 &\leq C \|q|_n \|_1, \end{split}$$

where $h_0 \neq 0$ is the independent term of h, we have

$$||hq||_{i-lac} \ge \beta(n, C, K, Q, i) ||h||_1 ||q||_1.$$

Main result

Do we have the following more general result?

Question

Given n, C, K, i,, there is a $\beta = \beta$ (n, C, K, i) > 0 such that for all polynomials h and q satisfying

$$||h||_1 \le K||h||_{i-lac},$$

 $||q||_1 \le C||q|_n||_1,$

we have

$$||hq||_{i-lac} \ge \beta(n, C, K, i) ||h||_1 ||q||_1.$$

Extension of polynomial norms to Banach spaces

Theorem (Borwein and Erdélyi - 1995)

Let $m, n \in \mathbb{N}$ be such that m < n and let $p \in \mathcal{P}^c_m$ and $q \in \mathcal{P}^c_{n-m}$, then we have

$$||p|||q|| \leq \frac{1}{2}C_{n,m}C_{n,n-m}||pq||,$$

where $C_{n,k} = 2^k \prod_{j=1}^k \left(1 + \cos\frac{(2j-1)\pi}{2n}\right)$ for $1 \le k \le n$. Moreover, the above inequality is sharp in the case where p vanishes at the m roots of T_n closest to -1 and q vanishes at the remaining roots of T_n .

Extension of polynomial norms to Banach spaces

Theorem (Araújo, Enflo, Muñoz, Rodríguez and Seoane - 2019/2020)

Let E be a Banach space over \mathbb{K} (\mathbb{R} or \mathbb{C}). Let $m, n \in \mathbb{N}$ be such that m < n and let $P \in \mathcal{P}_m(E)$ and $Q \in \mathcal{P}_{n-m}(E)$. Then we have

$$||P||||Q|| \le \frac{1}{2}C_{n,m}C_{n,n-m}||PQ||,$$

where $C_{n,k}$ with $1 \le k \le n$ is as in the theorem above.

Bibliography

- G. Araújo, P. H. Enflo, G. A. Muñoz-Fernández, D. L. Rodríguez-Vidanes, and J. B. Seoane-Sepúlveda, *Quantitative and qualitative estimates on the* norm of products of polynomials on the norm, Israel Journal of Mathematics in press.
- [2] B. Beauzamy and P. Enflo, Estimations de produits de polynômes, J. Number Theory 21 (1985), no. 3, 390–412 (French).
- [3] P. Borwein and T. Erdélyi, Polynomials and polynomial inequalities, Graduate Texts in Mathematics, vol. 161, Springer-Verlag, New York, 1995.
- [4] P. Enflo, On the invariant subspace problem for Banach spaces, Acta Math. 158 (1987), no. 3-4, 213–313.

THANK YOU!