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Notations

In the following let X be a real infinite dimensional Banach space.
We use standard notation. Let BX be closed unit ball and SX the
unit sphere and X ∗ the dual of X .

We consider a slice of BX to be a set

S(BX , x
∗, α) = {x ∈ BX : x∗(x) > 1− α},

where x∗ ∈ SX∗ and α > 0.

For a x ∈ SX and ε > 0 we denote by ∆ε(x) the set

∆ε(x) = {y ∈ BX : ‖x − y‖ ≥ 2− ε}.



Daugavet property

Proposition 1 (see Werner, 2001)

The following assertions about a Banach space X are equivalent:

(a) X has the Daugavet property, i.e.,

‖Id − T‖ = 1 + ‖T‖

for every rank-1 (and norm-1) operator T : X → X;

(b) for every slice S of BX , every x ∈ SX and every ε > 0 there
exists an y ∈ S such that ‖x − y‖ ≥ 2− ε;

(c) BX = conv ∆ε(x) for all x ∈ SX and ε > 0, where

∆ε(x) = {y ∈ BX : ‖x − y‖ ≥ 2− ε}.



DLD2P

The Daugavet property implies that every rank-1 projection
P : X → X satisfies ‖I − P‖ ≥ 2.

Proposition 2 (Ivakhno, Kadets, 2004, and Werner, 2001)

The following assertions about a Banach space X are equivalent:

(a) X has the diametral local diameter-2 property (DLD2P), i.e.,

‖Id − P‖ ≥ 2

for every rank-1 projection P : X → X;

(b) for every slice S of BX , every x ∈ S ∩ SX and every ε > 0
there exists an y ∈ S such that ‖x − y‖ ≥ 2− ε;

(c) x ∈ conv ∆ε(x) for all x ∈ SX and ε > 0, where

∆ε(x) = {y ∈ BX : ‖x − y‖ ≥ 2− ε}.



Daugavet points and ∆-points

Motivated by the previous characterizations we introduce the
following definitions:

Definition 1

We say that x ∈ SX is a Daugavet point if BX = conv ∆ε(x) for
every ε > 0.

Definition 2

We say that x ∈ SX is a ∆-point if x ∈ conv ∆ε(x) for every ε > 0.

Recall that ∆ε(x) = {y ∈ BX : ‖x − y‖ ≥ 2− ε}.

Remark

It is easy to see, that every Daugavet-point is a ∆-point. The
reverse is generally not true.
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Absolute normalized norm

Let X and Y be Banach spaces.

Definition 3

A norm ‖ · ‖N on X ×Y is said to be absolute if there is a function
N : [0,∞)× [0,∞)→ [0,∞) such that

‖(x , y)‖N = N(‖x‖, ‖y‖) for all (x , y) ∈ X × Y .

Absolute norm ‖ · ‖N is normalized if N(0, 1) = N(1, 0) = 1.

Product space X × Y equipped with an absolute normalized norm
‖ · ‖N is denoted by X ⊕N Y .
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Results from Abrahamsen, Haller, Lima, P., 2018

Proposition 3

Let X and Y be Banach spaces and N an absolute normalized on
R2. If X and Y have a ∆-point then so does X ⊕N Y .

Proposition 4

Let X and Y be Banach spaces and N a POH norm on R2. If X
and Y have a Daugavet-point then so does X ⊕N Y .

Proposition 5

Let X and Y be Banach spaces and N an absolutely nomalized
norm with the property (α). Then X ⊕N Y cannot have any
Daugavet-points.
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A-octacedral norms

Definition 4

Let X be a Banach space and A ⊂ SX . We say that an absolute
normalized norm N on R2 is A-octahedral (A-OH) if for every
x1, . . . , xn ∈ A and every ε > 0 there exists y ∈ SX such that
‖xi + y‖ ≥ 2− ε for every i ∈ {1, . . . , n}.

Remark

Every POH norm N is a {(0, 1), (1, 0)}-octahedral.

Remark

SX -octahedrality is octahedrality of a norm in general sense.
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A sense of dichotomy of absolute normalized norms

Proposition 6

Let X be a Banach space c = maxN(e,1)=1 e, d = maxN(1,f )=1 f
and A = {(c , 1), (1, d)}. The following are equivalent:

(i) N is A-OH,

(ii) N does not have the property (α).



1.

X and Y with Daugavet points
m

X ⊕N Y with Daugavet points
?



Results concerning Daugavet-points (1)

N 6=∞, x and y are Daugavet-points

a 6= 0 and b 6= 0 ⇔

(ax , by) is Daugavet-point

N 6=∞ and a = 0, y is Daugavet-point

N
(
(0, 1) + (1, d)

)
= 2 ⇔

(ax , by) is Daugavet-point

N 6=∞ ja b = 0, x is Daugavet-point

N
(
(1, 0) + (c, 1)

)
= 2 ⇔

(ax , by) is Daugavet-point



First quadrant of the unit ball of a special A-OH norm N
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Results concerning Daugavet-points (2)

b = 0 and N
(
(1, 0) + (1, d)

)
< 2

or (ax , by) is not Daugavet-point

a = 0 and N
(
(0, 1) + (c , 1)

)
< 2

x or y is Daugavet-point

N =∞ ⇔

(ax , by) is Daugavet-point



2.

X ⊕N Y with ∆-points
m

X and/or Y with ∆-points
?



Results regarding ∆-points

Theorem 1

Let X and Y be Banach spaces, x ∈ SX , y ∈ SY , N an absolute
normalised norm on R2. Assume that (ax , by) is a ∆-point in
X ⊕N Y .

(a) If b 6= 1, then x is a ∆-point in X .

(b) If a 6= 1, then y is a ∆-point in Y .



Preparations

Lemma 1 (Abrahamsen, Haller, Lima, P., 2018)

Let X be a Banach space and x ∈ SX . Then the following
assertions are equivalent:

(i) x is a ∆-point;

(ii) for every slice S(BX , x
∗, α) of BX , with x ∈ S(BX , x

∗, α), and
every ε > 0 there exists u ∈ S(BX , x

∗, α) such that
‖x − u‖ ≥ 2− ε.

Definition 5

Let X be a Banach space, x ∈ SX , and k > 1. We say that x is a
∆k -point in X , if for every S(BX , x

∗, α) with x ∈ S(BX , x
∗, α) and

for every ε > 0 there exists u ∈ S(BX , x
∗, kα) such that

‖x − u‖ ≥ 2− ε.



∆k-point need not be ∆-point

Example 1

Let X and Y be Banach spaces, x ∈ SX and y ∈ SY , and let
k > 1. Set Z = X ⊕1 Y and z =

(
(1− 1/k)x , y/k

)
. Assume that

x is not a ∆-point in X and y is a ∆-point in Y . Then z is not a
∆-point in Z but z is a ∆k -point in Z .



Results regarding ∆-points continue

Proposition 7

Let X and Y be Banach spaces, x ∈ SX and y ∈ SY . Let p, q > 1
satisfy 1/p + 1/q = 1.

(a) If x is a ∆p-point in X and y is a ∆q-point in Y , then (x , y)
is a ∆-point in X ⊕∞ Y .

(b) If x is not a ∆p-point in X and y is not a ∆q-point in Y ,
then (x , y) is not a ∆-point in X ⊕∞ Y .
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