Δ - and Daugavet-points in Banach spaces

Katriin Pirk

University of Tartu, Estonia

A joint work with R. Haller and T. Veeorg January 28th 2020 Castellón

Supporters

This research and presentation are supported by

- institutional research funding IUT20-57 of the Estonian Ministry of Education and Research;
- Estonian Doctoral School of Mathematics and Statistics;
- University of Tartu Foundation's CWT Estonia travel scholarship.

Δ - and Daugavet-points in Banach spaces

Katriin Pirk

University of Tartu, Estonia

A joint work with R. Haller and T. Veeorg January 28th 2020 Castellón

Delta building

- points

References

- T. A. Abrahamsen, R. Haller, V. Lima, K. Pirk. *Delta- and Daugavet-points in Banach spaces*, to appear in Proc. Edinb. Math. Soc., arXiv:1812.02450 [math.FA].
- R. Haller, K. Pirk, T. Veeorg. *Daugavet-points and direct sums*, arXiv:2001.06197.
- Y. Ivakhno and V. M. Kadets, *Unconditional sums of spaces with bad projections*, Visn. Khark. Univ., Ser. Mat. Prykl. Mat. Mekh. **645** (2004), no. 54, 30–35.
- D. Werner, *Recent progress on the Daugavet property*, Irish Math. Soc. Bull., **46** (2001), 77–97.

Notations

In the following let X be a real infinite dimensional Banach space. We use standard notation. Let B_X be closed unit ball and S_X the unit sphere and X^* the dual of X.

We consider a slice of B_X to be a set

$$S(B_X, x^*, \alpha) = \{x \in B_X : x^*(x) > 1 - \alpha\},\$$

where $x^* \in S_{X^*}$ and $\alpha > 0$.

For a $x \in S_X$ and $\varepsilon > 0$ we denote by $\Delta_{\varepsilon}(x)$ the set

$$\Delta_{\varepsilon}(x) = \{ y \in B_X \colon ||x - y|| \ge 2 - \varepsilon \}.$$

Daugavet property

Proposition 1 (see Werner, 2001)

The following assertions about a Banach space X are equivalent:

(a) X has the Daugavet property, i.e.,

$$||Id - T|| = 1 + ||T||$$

for every rank-1 (and norm-1) operator $T: X \to X$;

- (b) for every slice S of B_X , every $x \in S_X$ and every $\varepsilon > 0$ there exists an $y \in S$ such that $||x y|| \ge 2 \varepsilon$;
- (c) $B_X = \overline{\operatorname{conv}} \, \Delta_{\varepsilon}(x)$ for all $x \in S_X$ and $\varepsilon > 0$, where

$$\Delta_{\varepsilon}(x) = \{ y \in B_X \colon ||x - y|| \ge 2 - \varepsilon \}.$$

DLD2P

The Daugavet property implies that every rank-1 projection $P: X \to X$ satisfies $||I - P|| \ge 2$.

Proposition 2 (Ivakhno, Kadets, 2004, and Werner, 2001)

The following assertions about a Banach space X are equivalent:

(a) X has the diametral local diameter-2 property (DLD2P), i.e.,

$$||Id - P|| \ge 2$$

for every rank-1 projection $P: X \to X$;

- (b) for every slice S of B_X , every $x \in S \cap S_X$ and every $\varepsilon > 0$ there exists an $y \in S$ such that $||x y|| \ge 2 \varepsilon$;
- (c) $x \in \overline{\operatorname{conv}} \Delta_{\varepsilon}(x)$ for all $x \in S_X$ and $\varepsilon > 0$, where

$$\Delta_{\varepsilon}(x) = \{ y \in B_X \colon ||x - y|| \ge 2 - \varepsilon \}.$$

Daugavet points and Δ -points

Motivated by the previous characterizations we introduce the following definitions:

Definition 1

We say that $x \in S_X$ is a *Daugavet point* if $B_X = \overline{\text{conv}} \, \Delta_{\varepsilon}(x)$ for every $\varepsilon > 0$.

Definition 2

We say that $x \in S_X$ is a Δ -point if $x \in \overline{\text{conv}} \Delta_{\varepsilon}(x)$ for every $\varepsilon > 0$.

Recall that $\Delta_{\varepsilon}(x) = \{ y \in B_X : ||x - y|| \ge 2 - \varepsilon \}.$

Daugavet points and Δ -points

Motivated by the previous characterizations we introduce the following definitions:

Definition 1

We say that $x \in S_X$ is a *Daugavet point* if $B_X = \overline{\text{conv}} \, \Delta_{\varepsilon}(x)$ for every $\varepsilon > 0$.

Definition 2

We say that $x \in S_X$ is a Δ -point if $x \in \overline{\text{conv}} \, \Delta_{\varepsilon}(x)$ for every $\varepsilon > 0$.

Recall that $\Delta_{\varepsilon}(x) = \{ y \in B_X : ||x - y|| \ge 2 - \varepsilon \}.$

Remark

It is easy to see, that every Daugavet-point is a Δ -point. The reverse is generally not true.

Absolute normalized norm

Let X and Y be Banach spaces.

Definition 3

A norm $\|\cdot\|_N$ on $X\times Y$ is said to be *absolute* if there is a function $N\colon [0,\infty)\times [0,\infty)\to [0,\infty)$ such that

$$||(x,y)||_N = N(||x||,||y||)$$
 for all $(x,y) \in X \times Y$.

Absolute norm $\|\cdot\|_N$ is normalized if N(0,1) = N(1,0) = 1.

Product space $X \times Y$ equipped with an absolute normalized norm $\|\cdot\|_N$ is denoted by $X \oplus_N Y$.

First quadrant of the unit ball of a positively OH norm N

First quadrant of the unit ball of a norm N with property (α)

Results from Abrahamsen, Haller, Lima, P., 2018

Proposition 3

Let X and Y be Banach spaces and N an absolute normalized on \mathbb{R}^2 . If X and Y have a Δ -point then so does $X \oplus_N Y$.

Results from Abrahamsen, Haller, Lima, P., 2018

Proposition 3

Let X and Y be Banach spaces and N an absolute normalized on \mathbb{R}^2 . If X and Y have a Δ -point then so does $X \oplus_N Y$.

Proposition 4

Let X and Y be Banach spaces and N a POH norm on \mathbb{R}^2 . If X and Y have a Daugavet-point then so does $X \oplus_N Y$.

Results from Abrahamsen, Haller, Lima, P., 2018

Proposition 3

Let X and Y be Banach spaces and N an absolute normalized on \mathbb{R}^2 . If X and Y have a Δ -point then so does $X \oplus_N Y$.

Proposition 4

Let X and Y be Banach spaces and N a POH norm on \mathbb{R}^2 . If X and Y have a Daugavet-point then so does $X \oplus_N Y$.

Proposition 5

Let X and Y be Banach spaces and N an absolutely nomalized norm with the property (α) . Then $X \oplus_N Y$ cannot have any Daugavet-points.

A-octacedral norms

Definition 4

Let X be a Banach space and $A \subset S_X$. We say that an absolute normalized norm N on \mathbb{R}^2 is A-octahedral (A-OH) if for every $x_1,\ldots,x_n\in A$ and every $\varepsilon>0$ there exists $y\in S_X$ such that $\|x_i+y\|\geq 2-\varepsilon$ for every $i\in\{1,\ldots,n\}$.

A-octacedral norms

Definition 4

Let X be a Banach space and $A \subset S_X$. We say that an absolute normalized norm N on \mathbb{R}^2 is A-octahedral (A-OH) if for every $x_1, \ldots, x_n \in A$ and every $\varepsilon > 0$ there exists $y \in S_X$ such that $\|x_i + y\| \ge 2 - \varepsilon$ for every $i \in \{1, \ldots, n\}$.

Remark

Every POH norm N is a $\{(0,1),(1,0)\}$ -octahedral.

A-octacedral norms

Definition 4

Let X be a Banach space and $A \subset S_X$. We say that an absolute normalized norm N on \mathbb{R}^2 is A-octahedral (A-OH) if for every $x_1,\ldots,x_n\in A$ and every $\varepsilon>0$ there exists $y\in S_X$ such that $\|x_i+y\|\geq 2-\varepsilon$ for every $i\in\{1,\ldots,n\}$.

Remark

Every POH norm N is a $\{(0,1),(1,0)\}$ -octahedral.

Remark

 S_X -octahedrality is octahedrality of a norm in general sense.

First quadrant of the unit ball of a A-OH norm N

A sense of dichotomy of absolute normalized norms

Proposition 6

Let X be a Banach space $c = \max_{N(e,1)=1} e$, $d = \max_{N(1,f)=1} f$ and $A = \{(c,1),(1,d)\}$. The following are equivalent:

- (i) N is A-OH,
- (ii) N does not have the property (α) .

1.

X and Y with Daugavet points \uparrow

 $X \oplus_N Y$ with Daugavet points ?

Results concerning Daugavet-points (1)

$N eq \infty$,	x and y are Daugavet-points
$a \neq 0$ and $b \neq 0$	\Leftrightarrow
	(ax, by) is Daugavet-point
$N \neq \infty$ and $a = 0$,	y is Daugavet-point
N((0,1)+(1,d))=2	\Leftrightarrow
	(ax, by) is Daugavet-point
$N eq \infty$ ja $b = 0$,	x is Daugavet-point
N((1,0)+(c,1))=2	\Leftrightarrow
	(ax, by) is Daugavet-point

First quadrant of the unit ball of a special A-OH norm N

Results concerning Daugavet-points (2)

b = 0 and $N((1,0) + (1,d)) < 2$	
or	(ax, by) is not Daugavet-point
a = 0 and N((0,1) + (c,1)) < 2	
	x or y is Daugavet-point
$N = \infty$	\Leftrightarrow
	(ax, by) is Daugavet-point

2.

 $X \oplus_{N} Y$ with Δ -points \updownarrow X and/or Y with Δ -points

Results regarding Δ -points

Theorem 1

Let X and Y be Banach spaces, $x \in S_X$, $y \in S_Y$, N an absolute normalised norm on \mathbb{R}^2 . Assume that (ax, by) is a Δ -point in $X \oplus_N Y$.

- (a) If $b \neq 1$, then x is a Δ -point in X.
- (b) If $a \neq 1$, then y is a Δ -point in Y.

Preparations

Lemma 1 (Abrahamsen, Haller, Lima, P., 2018)

Let X be a Banach space and $x \in S_X$. Then the following assertions are equivalent:

- (i) x is a Δ -point;
- (ii) for every slice $S(B_X, x^*, \alpha)$ of B_X , with $x \in S(B_X, x^*, \alpha)$, and every $\varepsilon > 0$ there exists $u \in S(B_X, x^*, \alpha)$ such that $||x u|| \ge 2 \varepsilon$.

Definition 5

Let X be a Banach space, $x \in S_X$, and k > 1. We say that x is a Δ_k -point in X, if for every $S(B_X, x^*, \alpha)$ with $x \in S(B_X, x^*, \alpha)$ and for every $\varepsilon > 0$ there exists $u \in S(B_X, x^*, k\alpha)$ such that $||x - u|| \ge 2 - \varepsilon$.

Δ_k -point need not be Δ -point

Example 1

Let X and Y be Banach spaces, $x \in S_X$ and $y \in S_Y$, and let k > 1. Set $Z = X \oplus_1 Y$ and z = ((1 - 1/k)x, y/k). Assume that x is not a Δ -point in X and y is a Δ -point in Y. Then z is not a Δ -point in Z but z is a Δ_k -point in Z.

Results regarding Δ -points continue

Proposition 7

Let X and Y be Banach spaces, $x \in S_X$ and $y \in S_Y$. Let p, q > 1 satisfy 1/p + 1/q = 1.

- (a) If x is a Δ_p -point in X and y is a Δ_q -point in Y, then (x,y) is a Δ -point in $X \oplus_{\infty} Y$.
- (b) If x is not a Δ_p -point in X and y is not a Δ_q -point in Y, then (x, y) is not a Δ -point in $X \oplus_{\infty} Y$.

Δ - and Daugavet-points in Banach spaces

Katriin Pirk

University of Tartu, Estonia

A joint work with R. Haller and T. Veeorg January 28th 2020 Castellón