Δ - and Daugavet-points in Banach spaces #### Katriin Pirk University of Tartu, Estonia A joint work with R. Haller and T. Veeorg January 28th 2020 Castellón ## Supporters This research and presentation are supported by - institutional research funding IUT20-57 of the Estonian Ministry of Education and Research; - Estonian Doctoral School of Mathematics and Statistics; - University of Tartu Foundation's CWT Estonia travel scholarship. ## Δ - and Daugavet-points in Banach spaces #### Katriin Pirk University of Tartu, Estonia A joint work with R. Haller and T. Veeorg January 28th 2020 Castellón ## Delta building # - points #### References - T. A. Abrahamsen, R. Haller, V. Lima, K. Pirk. *Delta- and Daugavet-points in Banach spaces*, to appear in Proc. Edinb. Math. Soc., arXiv:1812.02450 [math.FA]. - R. Haller, K. Pirk, T. Veeorg. *Daugavet-points and direct sums*, arXiv:2001.06197. - Y. Ivakhno and V. M. Kadets, *Unconditional sums of spaces with bad projections*, Visn. Khark. Univ., Ser. Mat. Prykl. Mat. Mekh. **645** (2004), no. 54, 30–35. - D. Werner, *Recent progress on the Daugavet property*, Irish Math. Soc. Bull., **46** (2001), 77–97. #### Notations In the following let X be a real infinite dimensional Banach space. We use standard notation. Let B_X be closed unit ball and S_X the unit sphere and X^* the dual of X. We consider a slice of B_X to be a set $$S(B_X, x^*, \alpha) = \{x \in B_X : x^*(x) > 1 - \alpha\},\$$ where $x^* \in S_{X^*}$ and $\alpha > 0$. For a $x \in S_X$ and $\varepsilon > 0$ we denote by $\Delta_{\varepsilon}(x)$ the set $$\Delta_{\varepsilon}(x) = \{ y \in B_X \colon ||x - y|| \ge 2 - \varepsilon \}.$$ ## Daugavet property #### Proposition 1 (see Werner, 2001) The following assertions about a Banach space X are equivalent: (a) X has the Daugavet property, i.e., $$||Id - T|| = 1 + ||T||$$ for every rank-1 (and norm-1) operator $T: X \to X$; - (b) for every slice S of B_X , every $x \in S_X$ and every $\varepsilon > 0$ there exists an $y \in S$ such that $||x y|| \ge 2 \varepsilon$; - (c) $B_X = \overline{\operatorname{conv}} \, \Delta_{\varepsilon}(x)$ for all $x \in S_X$ and $\varepsilon > 0$, where $$\Delta_{\varepsilon}(x) = \{ y \in B_X \colon ||x - y|| \ge 2 - \varepsilon \}.$$ #### DLD2P The Daugavet property implies that every rank-1 projection $P: X \to X$ satisfies $||I - P|| \ge 2$. #### Proposition 2 (Ivakhno, Kadets, 2004, and Werner, 2001) The following assertions about a Banach space X are equivalent: (a) X has the diametral local diameter-2 property (DLD2P), i.e., $$||Id - P|| \ge 2$$ for every rank-1 projection $P: X \to X$; - (b) for every slice S of B_X , every $x \in S \cap S_X$ and every $\varepsilon > 0$ there exists an $y \in S$ such that $||x y|| \ge 2 \varepsilon$; - (c) $x \in \overline{\operatorname{conv}} \Delta_{\varepsilon}(x)$ for all $x \in S_X$ and $\varepsilon > 0$, where $$\Delta_{\varepsilon}(x) = \{ y \in B_X \colon ||x - y|| \ge 2 - \varepsilon \}.$$ ## Daugavet points and Δ -points Motivated by the previous characterizations we introduce the following definitions: #### Definition 1 We say that $x \in S_X$ is a *Daugavet point* if $B_X = \overline{\text{conv}} \, \Delta_{\varepsilon}(x)$ for every $\varepsilon > 0$. #### Definition 2 We say that $x \in S_X$ is a Δ -point if $x \in \overline{\text{conv}} \Delta_{\varepsilon}(x)$ for every $\varepsilon > 0$. Recall that $\Delta_{\varepsilon}(x) = \{ y \in B_X : ||x - y|| \ge 2 - \varepsilon \}.$ ## Daugavet points and Δ -points Motivated by the previous characterizations we introduce the following definitions: #### Definition 1 We say that $x \in S_X$ is a *Daugavet point* if $B_X = \overline{\text{conv}} \, \Delta_{\varepsilon}(x)$ for every $\varepsilon > 0$. #### Definition 2 We say that $x \in S_X$ is a Δ -point if $x \in \overline{\text{conv}} \, \Delta_{\varepsilon}(x)$ for every $\varepsilon > 0$. Recall that $\Delta_{\varepsilon}(x) = \{ y \in B_X : ||x - y|| \ge 2 - \varepsilon \}.$ #### Remark It is easy to see, that every Daugavet-point is a Δ -point. The reverse is generally not true. #### Absolute normalized norm Let X and Y be Banach spaces. #### **Definition 3** A norm $\|\cdot\|_N$ on $X\times Y$ is said to be *absolute* if there is a function $N\colon [0,\infty)\times [0,\infty)\to [0,\infty)$ such that $$||(x,y)||_N = N(||x||,||y||)$$ for all $(x,y) \in X \times Y$. Absolute norm $\|\cdot\|_N$ is normalized if N(0,1) = N(1,0) = 1. Product space $X \times Y$ equipped with an absolute normalized norm $\|\cdot\|_N$ is denoted by $X \oplus_N Y$. ## First quadrant of the unit ball of a positively OH norm N ## First quadrant of the unit ball of a norm N with property (α) ## Results from Abrahamsen, Haller, Lima, P., 2018 #### Proposition 3 Let X and Y be Banach spaces and N an absolute normalized on \mathbb{R}^2 . If X and Y have a Δ -point then so does $X \oplus_N Y$. ## Results from Abrahamsen, Haller, Lima, P., 2018 #### Proposition 3 Let X and Y be Banach spaces and N an absolute normalized on \mathbb{R}^2 . If X and Y have a Δ -point then so does $X \oplus_N Y$. #### Proposition 4 Let X and Y be Banach spaces and N a POH norm on \mathbb{R}^2 . If X and Y have a Daugavet-point then so does $X \oplus_N Y$. ## Results from Abrahamsen, Haller, Lima, P., 2018 #### Proposition 3 Let X and Y be Banach spaces and N an absolute normalized on \mathbb{R}^2 . If X and Y have a Δ -point then so does $X \oplus_N Y$. #### Proposition 4 Let X and Y be Banach spaces and N a POH norm on \mathbb{R}^2 . If X and Y have a Daugavet-point then so does $X \oplus_N Y$. #### Proposition 5 Let X and Y be Banach spaces and N an absolutely nomalized norm with the property (α) . Then $X \oplus_N Y$ cannot have any Daugavet-points. #### A-octacedral norms #### Definition 4 Let X be a Banach space and $A \subset S_X$. We say that an absolute normalized norm N on \mathbb{R}^2 is A-octahedral (A-OH) if for every $x_1,\ldots,x_n\in A$ and every $\varepsilon>0$ there exists $y\in S_X$ such that $\|x_i+y\|\geq 2-\varepsilon$ for every $i\in\{1,\ldots,n\}$. #### A-octacedral norms #### Definition 4 Let X be a Banach space and $A \subset S_X$. We say that an absolute normalized norm N on \mathbb{R}^2 is A-octahedral (A-OH) if for every $x_1, \ldots, x_n \in A$ and every $\varepsilon > 0$ there exists $y \in S_X$ such that $\|x_i + y\| \ge 2 - \varepsilon$ for every $i \in \{1, \ldots, n\}$. #### Remark Every POH norm N is a $\{(0,1),(1,0)\}$ -octahedral. #### A-octacedral norms #### Definition 4 Let X be a Banach space and $A \subset S_X$. We say that an absolute normalized norm N on \mathbb{R}^2 is A-octahedral (A-OH) if for every $x_1,\ldots,x_n\in A$ and every $\varepsilon>0$ there exists $y\in S_X$ such that $\|x_i+y\|\geq 2-\varepsilon$ for every $i\in\{1,\ldots,n\}$. #### Remark Every POH norm N is a $\{(0,1),(1,0)\}$ -octahedral. #### Remark S_X -octahedrality is octahedrality of a norm in general sense. ## First quadrant of the unit ball of a A-OH norm N ## A sense of dichotomy of absolute normalized norms #### Proposition 6 Let X be a Banach space $c = \max_{N(e,1)=1} e$, $d = \max_{N(1,f)=1} f$ and $A = \{(c,1),(1,d)\}$. The following are equivalent: - (i) N is A-OH, - (ii) N does not have the property (α) . ## 1. X and Y with Daugavet points \uparrow $X \oplus_N Y$ with Daugavet points ? ## Results concerning Daugavet-points (1) | $N eq \infty$, | x and y are Daugavet-points | |-------------------------------|-------------------------------| | $a \neq 0$ and $b \neq 0$ | \Leftrightarrow | | | (ax, by) is Daugavet-point | | $N \neq \infty$ and $a = 0$, | y is Daugavet-point | | N((0,1)+(1,d))=2 | \Leftrightarrow | | | (ax, by) is Daugavet-point | | $N eq \infty$ ja $b = 0$, | x is Daugavet-point | | N((1,0)+(c,1))=2 | \Leftrightarrow | | | (ax, by) is Daugavet-point | ## First quadrant of the unit ball of a special A-OH norm N ## Results concerning Daugavet-points (2) | b = 0 and $N((1,0) + (1,d)) < 2$ | | |----------------------------------|--------------------------------| | or | (ax, by) is not Daugavet-point | | a = 0 and N((0,1) + (c,1)) < 2 | | | | x or y is Daugavet-point | | $N = \infty$ | \Leftrightarrow | | | (ax, by) is Daugavet-point | 2. $X \oplus_{N} Y$ with Δ -points \updownarrow X and/or Y with Δ -points ## Results regarding Δ -points #### Theorem 1 Let X and Y be Banach spaces, $x \in S_X$, $y \in S_Y$, N an absolute normalised norm on \mathbb{R}^2 . Assume that (ax, by) is a Δ -point in $X \oplus_N Y$. - (a) If $b \neq 1$, then x is a Δ -point in X. - (b) If $a \neq 1$, then y is a Δ -point in Y. ## Preparations #### Lemma 1 (Abrahamsen, Haller, Lima, P., 2018) Let X be a Banach space and $x \in S_X$. Then the following assertions are equivalent: - (i) x is a Δ -point; - (ii) for every slice $S(B_X, x^*, \alpha)$ of B_X , with $x \in S(B_X, x^*, \alpha)$, and every $\varepsilon > 0$ there exists $u \in S(B_X, x^*, \alpha)$ such that $||x u|| \ge 2 \varepsilon$. #### Definition 5 Let X be a Banach space, $x \in S_X$, and k > 1. We say that x is a Δ_k -point in X, if for every $S(B_X, x^*, \alpha)$ with $x \in S(B_X, x^*, \alpha)$ and for every $\varepsilon > 0$ there exists $u \in S(B_X, x^*, k\alpha)$ such that $||x - u|| \ge 2 - \varepsilon$. ## Δ_k -point need not be Δ -point #### Example 1 Let X and Y be Banach spaces, $x \in S_X$ and $y \in S_Y$, and let k > 1. Set $Z = X \oplus_1 Y$ and z = ((1 - 1/k)x, y/k). Assume that x is not a Δ -point in X and y is a Δ -point in Y. Then z is not a Δ -point in Z but z is a Δ_k -point in Z. ## Results regarding Δ -points continue #### Proposition 7 Let X and Y be Banach spaces, $x \in S_X$ and $y \in S_Y$. Let p, q > 1 satisfy 1/p + 1/q = 1. - (a) If x is a Δ_p -point in X and y is a Δ_q -point in Y, then (x,y) is a Δ -point in $X \oplus_{\infty} Y$. - (b) If x is not a Δ_p -point in X and y is not a Δ_q -point in Y, then (x, y) is not a Δ -point in $X \oplus_{\infty} Y$. ## Δ - and Daugavet-points in Banach spaces #### Katriin Pirk University of Tartu, Estonia A joint work with R. Haller and T. Veeorg January 28th 2020 Castellón