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Introduction

This talk is based on the joint work with R. Haller, J. Langemets
and V. Lima.
We only look at non-trivial real Banach spaces. Throughout, let
X ,Y be Banach spaces.
A slice of BX is a set of the form

S(x∗, α) = {x ∈ BX | x∗(x) > 1− α},

where x∗ ∈ SX∗ and α > 0.
By a convex combination of sets S1, . . . ,Sn we mean the set

n∑
i=1

λiSi ,

where λi > 0 and λ1 + · · ·+ λn = 1.



Diameter 2 properties

In [ALN] T. Abrahamsen, V. Lima and O. Nygaard introduced the
diameter 2 properties.

De�nition

We say that X has

1. the local diameter 2 property (LD2P) if every slice of the unit

ball BX has diameter 2;

2. the diameter 2 property (D2P) if every relatively weakly open

subset of the unit ball BX has diameter 2;

3. the strong diameter 2 property (SD2P) if every convex

combination of slices of the unit ball BX has diameter 2.



The Daugavet property

In [D] I. Daugavet introduces the following property

De�nition

A Banach space X has the Daugavet property (DP) if for every

rank-1 operator T : X → X

‖I + T‖ = 1+ ‖T‖.



Almost a picture!

The following relations hold.

DP ⇒ SD2P ⇒ D2P ⇒ LD2P

However, the converse implications do not hold.
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Whitley's thickness index

In [W] R. Whitley de�ned the following index

TW (X ) := inf
{
r > 0 | ∃x1, . . . , xn ∈ SX so that SX ⊂

n⋃
i=1

B(xi , r)
}
.

In [CPS] it was shown that TW (X ) is equal to

T (X ) := inf
{
r > 0 | ∃x1, . . . , xn ∈ SX so that BX ⊂

n⋃
i=1

B(xi , r)
}

when X is a in�nite-dimensional space.



Whitley's thickness index

In [W] R. Whitley de�ned the following index

TW (X ) := inf
{
r > 0 | ∃x1, . . . , xn ∈ SX so that SX ⊂

n⋃
i=1

B(xi , r)
}
.

In [CPS] it was shown that TW (X ) is equal to

T (X ) := inf
{
r > 0 | ∃x1, . . . , xn ∈ SX so that BX ⊂

n⋃
i=1

B(xi , r)
}

when X is a in�nite-dimensional space.



Daugavet index

In [RZ] A. Rueda Zoca introduced the following index

T (X ) := inf
{
r > 0 |∃x ∈ SX∃∅ 6= W ⊂ BX weakly open

such that W ⊂ B(x , r)
}

and its dual counterpart

Tw∗(X ) := inf
{
r > 0 |∃x ∈ SX∃∅ 6= W ⊂ BX weak∗ open

such that W ⊂ B(x , r)
}



New Daugavet indices

T s(X ) = inf
{
r > 0 | ∃x ∈ SX and a slice S of BX

such that S ⊂ B(x , r)

}
.

T ccs(X ) = inf
{
r > 0 | ∃ x ∈ SX and C 6= ∅ a convex combination

of slices of BX such that C ⊂ B(x , r)

}
.

T ccw (X ) = inf

r > 0 |
∃x ∈ SX and C 6= ∅ a convex combination
of relatively weakly open subsets of BX

such that C ⊂ B(x , r)

 .

Since T ccs(X ) = T ccw (X ), we will rename it as T cc(X ).



Properties of Daugavet indices

It is not di�cult to see that

2 ≥ T s(X ) ≥ T (X ) ≥ T cc(X ) ≥ 0.

1. If X has the LD2P, then T s(X ) ≥ 1.

2. If X has the D2P, then T (X ) ≥ 1.

3. If X has the SD2P, then T cc(X ) ≥ 1.



Finding spaces

If 1 < p <∞ then T s(X ⊕p Y ) ≤ 21/p and if X ,Y have DP then
T (X ⊕p Y ) ≥ 21/p.
Therefore for each δ ∈ [1, 2] there exists a space X such that
T s(X ) = T (X ) = δ.
Namely,

T s(c0) = T (c0) = 1

T s(C [0, 1]⊕p C [0, 1]) = T (C [0, 1]⊕p C [0, 1]) = 21/p

T s(C [0, 1]) = T (C [0, 1]) = 2



A similarity with the SD2P

It is known that when 1 < p <∞ then X ⊕p Y does not have the
SD2P.
In [HLN] it was shown that for 1 < p <∞ and X ,Y with SD2P
the space X ⊕p Y has the SDδP where δ = 21−1/p.
For the convex Daugavet index we have that
T cc(c0 ⊕p c0) = 2−1/p.



Rueda Zoca showed that for every norm 1 and weakly compact
operator T : X → X , it follows that

‖I + T‖ ≥ max{T (X ), Tw∗(X ∗)}.

and asked whether or not

inf{‖T + I‖ | T ∈ SL(X ,X ) and T is weakly compact}
= max{T (X ), Tw∗(X )}.

The answer is no, because [BGLPRZ] gave an example of a space
with the LD2P but with r.w.o. sets with arbitrarily small diameter.
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