ON THICKNESS-LIKE INDICES OF BANACH SPACES

Rihhard Nadel

Castellón January 2020

Introduction

This talk is based on the joint work with R. Haller, J. Langemets and V. Lima.

We only look at non-trivial real Banach spaces. Throughout, let $X,\,Y$ be Banach spaces.

A slice of B_X is a set of the form

$$S(x^*, \alpha) = \{x \in B_X \mid x^*(x) > 1 - \alpha\},\$$

where $x^* \in S_{X^*}$ and $\alpha > 0$.

By a convex combination of sets S_1, \ldots, S_n we mean the set

$$\sum_{i=1}^{n} \lambda_i S_i,$$

where $\lambda_i > 0$ and $\lambda_1 + \cdots + \lambda_n = 1$.

Diameter 2 properties

In [ALN] T. Abrahamsen, V. Lima and O. Nygaard introduced the diameter 2 properties.

Definition

We say that X has

- 1. the local diameter 2 property (LD2P) if every slice of the unit ball B_X has diameter 2;
- 2. the diameter 2 property (D2P) if every relatively weakly open subset of the unit ball B_X has diameter 2;
- 3. the strong diameter 2 property (SD2P) if every convex combination of slices of the unit ball B_X has diameter 2.

The Daugavet property

In [D] I. Daugavet introduces the following property

Definition

A Banach space X has the Daugavet property (DP) if for every rank-1 operator $T:X\to X$

$$||I + T|| = 1 + ||T||.$$

Almost a picture!

The following relations hold.

$$DP \Rightarrow SD2P \Rightarrow D2P \Rightarrow LD2P$$

Almost a picture!

The following relations hold.

$$DP \Rightarrow SD2P \Rightarrow D2P \Rightarrow LD2P$$

However, the converse implications do not hold.

Whitley's thickness index

In [W] R. Whitley defined the following index

$$T_W(X) := \inf \Big\{ r > 0 \mid \exists x_1, \dots, x_n \in S_X \text{ so that } S_X \subset \bigcup_{i=1}^n B(x_i, r) \Big\}.$$

Whitley's thickness index

In [W] R. Whitley defined the following index

$$T_W(X) := \inf \Big\{ r > 0 \mid \exists x_1, \dots, x_n \in S_X \text{ so that } S_X \subset \bigcup_{i=1}^n B(x_i, r) \Big\}.$$

In [CPS] it was shown that $T_W(X)$ is equal to

$$\mathcal{T}(X) := \inf \left\{ r > 0 \mid \exists x_1, \dots, x_n \in S_X \text{ so that } B_X \subset \bigcup_{i=1}^n B(x_i, r)
ight\}$$

when X is a infinite-dimensional space.

Daugavet index

In [RZ] A. Rueda Zoca introduced the following index

$$\mathcal{T}(X):=\inf\Big\{r>0\;|\exists x\in S_X\exists\emptyset
eq W\subset B_X\; ext{weakly open}$$
 such that $W\subset B(x,r)\Big\}$

and its dual counterpart

$$\mathcal{T}_{w^*}(X):=\inf\Big\{r>0\;|\exists x\in S_X\exists\emptyset
eq W\subset B_X\; ext{weak}^*\; ext{open}$$
 such that $W\subset B(x,r)\Big\}$

New Daugavet indices

$$\mathcal{T}^s(X) = \inf \left\{ r > 0 \mid \exists x \in S_X \text{ and a slice } S \text{ of } B_X \right\}.$$

$$\mathcal{T}^{ccs}(X) = \inf \left\{ r > 0 \mid \begin{array}{l} \exists \ x \in S_X \ \text{and} \ C \neq \emptyset \ \text{a convex combination} \\ \text{of slices of} \ B_X \ \text{such that} \ C \subset B(x,r) \end{array} \right\}.$$

$$\mathcal{T}^{ccw}(X) = \inf \left\{ r > 0 \mid ext{ of relatively weakly open subsets of } B_X \ ext{such that } C \subset B(x,r) \
ight\}.$$

Since $\mathcal{T}^{ccs}(X) = \mathcal{T}^{ccw}(X)$, we will rename it as $\mathcal{T}^{cc}(X)$.

Properties of Daugavet indices

It is not difficult to see that

$$2 \geq \mathcal{T}^s(X) \geq \mathcal{T}(X) \geq \mathcal{T}^{cc}(X) \geq 0.$$

- 1. If X has the LD2P, then $\mathcal{T}^s(X) \geq 1$.
- 2. If X has the D2P, then $\mathcal{T}(X) \geq 1$.
- 3. If X has the SD2P, then $\mathcal{T}^{cc}(X) \geq 1$.

Finding spaces

If $1 then <math>\mathcal{T}^s(X \oplus_p Y) \le 2^{1/p}$ and if X, Y have DP then $\mathcal{T}(X \oplus_p Y) \ge 2^{1/p}$.

Therefore for each $\delta \in [1,2]$ there exists a space X such that $\mathcal{T}^s(X) = \mathcal{T}(X) = \delta$. Namely,

$$\mathcal{T}^{s}(c_{0}) = \mathcal{T}(c_{0}) = 1$$

$$\mathcal{T}^{s}(C[0,1] \oplus_{p} C[0,1]) = \mathcal{T}(C[0,1] \oplus_{p} C[0,1]) = 2^{1/p}$$

$$\mathcal{T}^{s}(C[0,1]) = \mathcal{T}(C[0,1]) = 2$$

A similarity with the SD2P

It is known that when $1 then <math>X \oplus_p Y$ does not have the SD2P.

In [HLN] it was shown that for 1 and <math>X, Y with SD2P the space $X \oplus_p Y$ has the SD δ P where $\delta = 2^{1-1/p}$.

For the convex Daugavet index we have that

$$\mathcal{T}^{cc}(c_0 \oplus_{p} c_0) = 2^{-1/p}$$

Rueda Zoca showed that for every norm 1 and weakly compact operator $\mathcal{T}:X\to X$, it follows that

$$||I+T|| \geq \max\{\mathcal{T}(X), \mathcal{T}_{w^*}(X^*)\}.$$

and asked whether or not

$$\inf\{\|T+I\|\mid T\in S_{\mathcal{L}(X,X)} \text{ and } T \text{ is weakly compact}\}$$

$$=\max\{\mathcal{T}(X),\mathcal{T}_{w^*}(X)\}.$$

The answer is no, because [BGLPRZ] gave an example of a space with the LD2P but with r.w.o. sets with arbitrarily small diameter.

Thank you for your attention!

- I.K. Daugavet, On a property of completely continuous operators in the space C, Uspekhi Mat. Nauk 18.5 (1963), 157–158 (Russian).
- T. Abrahamsen, V. Lima, and O. Nygaard, *Remarks on diameter 2 properties*, J. Convex Anal. **20** (2013), 439–452.
- J. Becerra Guerrero, G. López Pérez, and A. Rueda Zoca, *Big slices versus big relatively weakly open subsets in Banach spaces*, J. Math. Anal. Appl. **428** (2015), no. 2, 855–865.
- R. Haller, J. Langemets, and R. Nadel, Stability of average roughness, octahedrality, and strong diameter two properties of Banach spaces with respect to absolute sums, Banach J. Math. Anal. 12 (2018), no. 1, 222–239.

Thank you for your attention (again)!

- J. M. F. Castillo, P. L. Papini, and M.Šimões, *Thick coverings* for the unit ball of a Banach space, Houston J. Math. **41** (2015), no. 1, 177–186.
- A. Rueda Zoca, Daugavet property and separability in Banach spaces, Banach J. Math. Anal., 12, 1 (2018), 68-84.
- R. Whitley, *The size of the unit sphere*, Canad. J. Math. **20** (1968), 450–455.