Analytic structure in fibers of the space of bounded analytic functions on the unit ball of c_0

Mingu Jung

Department of Mathematics, POSTECH jmingoo@postech.ac.kr

Joint work with Yun Sung Choi, Javier Falcó, Domingo García, & Manuel Maestre
October 26, 2019

Around 1955, S. Kakutani was the first one to study the space

$$\mathscr{H}^\infty(\mathbb{D}) = \{f: \mathbb{D} \to \mathbb{C} \text{ holomorphic \& bounded} \}$$

as a 'Banach algebra'.

$$\mathscr{M}(\mathscr{H}^\infty(\mathbb{D}))=\{\pmb{\phi}:\mathscr{H}^\infty(\mathbb{D}) o\mathbb{C} \text{ non-zero homomorphisms}\}$$

We call $\mathscr{M}(\mathscr{H}^\infty(\mathbb{D}))$ the **spectrum** or **maximal ideal space** of $\mathscr{H}^\infty(\mathbb{D})$

For $z \in \mathbb{D}$, let us consider the *point evaluation* at z

$$\delta(z)(f) := f(z) \qquad (f \in \mathcal{H}^{\infty}(\mathbb{D}))$$

The set $\mathscr{M}(\mathscr{H}^\infty(\mathbb{D}))\setminus\overline{\{\delta(z):z\in\mathbb{D}\}}^{w^*}$ is referred to as the **Corona**...

As we consider the space $\mathscr{H}^{\infty}(\mathbb{D})$ as a Banach algebra...

$$\mathscr{M}(\mathscr{H}^{\infty}(\mathbb{D})) = \{ \phi : \mathscr{H}^{\infty}(\mathbb{D}) \to \mathbb{C} \text{ non-zero homomorphisms} \}$$

We call $\mathscr{M}(\mathscr{H}^\infty(\mathbb{D}))$ the spectrum or maximal ideal space of $\mathscr{H}^\infty(\mathbb{D})$.

For $z \in \mathbb{D}$, let us consider the *point evaluation* at z

$$\delta(z)(f) := f(z) \qquad (f \in \mathscr{H}^{\infty}(\mathbb{D}))$$

The set $\mathscr{M}(\mathscr{H}^\infty(\mathbb{D}))\setminus\overline{\{\delta(z):z\in\mathbb{D}\}}^{w^*}$ is referred to as the **Corona**...

As we consider the space $\mathscr{H}^{\infty}(\mathbb{D})$ as a Banach algebra...

$$\mathscr{M}(\mathscr{H}^\infty(\mathbb{D})) = \{ \pmb{\varphi} : \mathscr{H}^\infty(\mathbb{D}) \to \mathbb{C} \text{ non-zero homomorphisms} \}$$

We call $\mathscr{M}(\mathscr{H}^\infty(\mathbb{D}))$ the spectrum or maximal ideal space of $\mathscr{H}^\infty(\mathbb{D})$.

For $z \in \mathbb{D}$, let us consider the *point evaluation* at z:

$$\delta(z)(f) := f(z) \qquad (f \in \mathscr{H}^{\infty}(\mathbb{D}))$$

The set $\mathcal{M}(\mathcal{H}^{\infty}(\mathbb{D}))\setminus\overline{\{\delta(z):z\in\mathbb{D}\}}^{w^*}$ is referred to as the **Corona**...

As we consider the space $\mathscr{H}^{\infty}(\mathbb{D})$ as a Banach algebra...

$$\mathscr{M}(\mathscr{H}^\infty(\mathbb{D})) = \{ \pmb{\varphi} : \mathscr{H}^\infty(\mathbb{D}) \to \mathbb{C} \text{ non-zero homomorphisms} \}$$

We call $\mathscr{M}(\mathscr{H}^\infty(\mathbb{D}))$ the spectrum or maximal ideal space of $\mathscr{H}^\infty(\mathbb{D})$.

For $z \in \mathbb{D}$, let us consider the *point evaluation* at z:

$$\delta(z)(f) := f(z) \qquad (f \in \mathscr{H}^{\infty}(\mathbb{D}))$$

The set $\mathscr{M}(\mathscr{H}^{\infty}(\mathbb{D}))\setminus\overline{\left\{\delta(z):z\in\mathbb{D}\right\}}^{w^*}$ is referred to as the **Corona**...

Corona Theorem (L. Carleson, 1962)

$$\mathscr{M}(\mathscr{H}^{\infty}(\mathbb{D})) = \overline{\{\delta(z) : z \in \mathbb{D}\}}^{w^*}$$

i.e., the Corona set is empty.

On the other hand, there is a natural surjective map

$$\pi: \mathcal{M}(\mathcal{H}^{\infty}(\mathbb{D})) \longrightarrow \overline{\mathbb{D}}$$
$$\varphi \longmapsto \varphi(z \mapsto z)$$

The **fiber** of the spectrum $\mathscr{M}(\mathscr{H}^\infty(\mathbb{D}))$ at the point $z\in\mathbb{D}$ is defined as

$$\mathcal{M}_{z}(\mathcal{H}^{\infty}(\mathbb{D})) = \{ \psi \in \mathcal{M}(\mathcal{H}^{\infty}(\mathbb{D})) : \pi(\psi) = z \} = \pi^{-1}(z)$$

On the other hand, there is a natural surjective map

$$\pi: \mathcal{M}(\mathcal{H}^{\infty}(\mathbb{D})) \longrightarrow \overline{\mathbb{D}}$$
$$\varphi \longmapsto \varphi(z \mapsto z)$$

The **fiber** of the spectrum $\mathscr{M}(\mathscr{H}^\infty(\mathbb{D}))$ at the point $z\in\overline{\mathbb{D}}$ is defined as

$$\mathcal{M}_{z}(\mathcal{H}^{\infty}(\mathbb{D})) = \{ \psi \in \mathcal{M}(\mathcal{H}^{\infty}(\mathbb{D})) : \pi(\psi) = z \} = \pi^{-1}(z).$$

Given a complex Banach space X, we consider

$$\mathscr{H}^{\infty}(B_X) = \{ f : B_X \to \mathbb{C} \text{ holomorphic \& bounded} \}$$

and its spectrum

$$\mathscr{M}(\mathscr{H}^\infty(B_X))=\{\varphi:\mathscr{H}^\infty(B_X) o\mathbb{C} \text{ non-zero homomorphisms}\}$$

endowed with the weak-star topology. There is a natural inclusion map

$$\delta: B_{X^{**}} \longrightarrow \mathcal{M}(\mathcal{H}^{\infty}(B_X))$$
$$z \longmapsto \delta(z),$$

where $\delta(z)(f):= ilde{f}(z)$ for $f\in\mathscr{A}$, where $ilde{f}$ is the Aron-Berner extension of f .

Given a complex Banach space X, we consider

$$\mathscr{H}^{\infty}(B_X) = \{ f : B_X \to \mathbb{C} \text{ holomorphic \& bounded} \}$$

and its spectrum

$$\mathscr{M}(\mathscr{H}^\infty(B_X))=\{\pmb{\phi}:\mathscr{H}^\infty(B_X) o\mathbb{C} \text{ non-zero homomorphisms}\}$$

endowed with the weak-star topology. There is a natural inclusion map

$$\delta: B_{X^{**}} \longrightarrow \mathcal{M}(\mathcal{H}^{\infty}(B_X))$$
$$z \longmapsto \delta(z),$$

where $\delta(z)(f) := ilde{f}(z)$ for $f \in \mathscr{A}$, where $ilde{f}$ is the Aron-Berner extension of f .

Given a complex Banach space X, we consider

$$\mathscr{H}^{\infty}(B_X) = \{ f : B_X \to \mathbb{C} \text{ holomorphic \& bounded} \}$$

and its spectrum

$$\mathscr{M}(\mathscr{H}^\infty(B_X))=\{\pmb{\varphi}:\mathscr{H}^\infty(B_X) o\mathbb{C} \text{ non-zero homomorphisms}\}$$

endowed with the weak-star topology. There is a natural inclusion map

$$\delta: B_{X^{**}} \longrightarrow \mathscr{M}(\mathscr{H}^{\infty}(B_X))$$

$$z \longmapsto \delta(z),$$

where $\delta(z)(f):= ilde{f}(z)$ for $f\in\mathscr{A}$, where $ilde{f}$ is the Aron-Berner extension of f .

Also, there is a natural surjective map

$$\pi: \mathscr{M}(\mathscr{H}^{\infty}(B_X)) \longrightarrow \overline{B}_{X^{**}}$$

$$\psi \longmapsto \psi|_{X^*}$$

We have the following commutative diagram:

The **fiber** of the spectrum $\mathcal{M}(\mathcal{H}^{\infty}(B_X))$ at the point $z\in \overline{B}_{X^{**}}$ is defined as

$$\mathcal{M}_{z}(\mathcal{H}^{\infty}(B_{X})) = \{ \psi \in \mathcal{M}(\mathcal{H}^{\infty}(B_{X})) : \pi(\psi) = z \} = \pi^{-1}(z)$$

Also, there is a natural surjective map

$$\pi: \mathscr{M}(\mathscr{H}^{\infty}(B_X)) \longrightarrow \overline{B}_{X^{**}}$$

$$\psi \longmapsto \psi|_{X^*}$$

We have the following commutative diagram:

The **fiber** of the spectrum $\mathscr{M}(\mathscr{H}^{\infty}(B_X))$ at the point $z\in \overline{B}_{X^{**}}$ is defined as

$$\mathcal{M}_{z}(\mathcal{H}^{\infty}(B_{X})) = \{ \psi \in \mathcal{M}(\mathcal{H}^{\infty}(B_{X})) : \pi(\psi) = z \} = \pi^{-1}(z)$$

Also, there is a natural surjective map

$$\pi: \mathscr{M}(\mathscr{H}^{\infty}(B_X)) \longrightarrow \overline{B}_{X^{**}}$$

$$\psi \longmapsto \psi|_{X^*}$$

We have the following commutative diagram:

The **fiber** of the spectrum $\mathscr{M}(\mathscr{H}^\infty(B_X))$ at the point $z\in \overline{B}_{X^{**}}$ is defined as

$$\mathscr{M}_{z}(\mathscr{H}^{\infty}(B_{X})) = \{ \psi \in \mathscr{M}(\mathscr{H}^{\infty}(B_{X})) : \pi(\psi) = z \} = \pi^{-1}(z).$$

When X is finite dimensional, then

$$\mathscr{M}_{\scriptscriptstyle \mathcal{Z}}(\mathscr{H}^\infty(B_X))=\{\delta_{\scriptscriptstyle \mathcal{Z}}\}$$
 for every $z\in B_X.$

In other words, the fiber at a point z lying inside B_X is just a singleton set

Surprisingly, what happens with the fibers of $\mathcal{M}(\mathcal{H}^{\infty}(B_X))$ at a boundary point $z \in S_X$ is in totally different situation.

When X is finite dimensional, then

$$\mathscr{M}_z(\mathscr{H}^\infty(B_X))=\{\delta_z\}$$
 for every $z\in B_X$.

In other words, the fiber at a point z lying inside B_X is just a singleton set.

Surprisingly, what happens with the fibers of $\mathcal{M}(\mathcal{H}^{\infty}(B_X))$ at a boundary point $z \in S_X$ is in totally different situation.

When X is finite dimensional, then

$$\mathscr{M}_z(\mathscr{H}^\infty(B_X))=\{\delta_z\}$$
 for every $z\in B_X$.

In other words, the fiber at a point z lying inside B_X is just a singleton set.

Surprisingly, what happens with the fibers of $\mathcal{M}(\mathscr{H}^{\infty}(B_X))$ at a boundary point $\mathbf{z} \in \mathbf{S}_{\mathbf{X}}$ is in totally different situation.

I. J. Schark = I. Kaplansky + J. Wermer + S. Kakutani + C. Buck + H. Royden + A. Gleason + R. Arens + K. Hoffman, 1961

There exists an analytic map $\Psi : \mathbb{D} \to \mathcal{M}(\mathcal{H}^{\infty}(\mathbb{D}))$ which is a homeomorphism and actually maps \mathbb{D} into the fiber $\mathcal{M}_1(\mathcal{H}^{\infty}(\mathbb{D}))$.

Recall that $\mathcal{M}_z(\mathscr{H}^\infty(B_X))=\{\delta_z\}$ for $z\in B_X$ when X is finite dimensional.

The situation for **infinite dimensional** X is quite different

R. M. Aron. B. J. Cole. T. W. Gamelin. 1991

• Suppose X is infinite dimensional. Then the fiber $\mathcal{M}_z(\mathcal{H}^\infty(B_X))$ over any $z\in \overline{B}_{X^{**}}$ contains a copy of $\beta\mathbb{N}\setminus\mathbb{N}$.

$$\circ \ B_{\ell_{\infty}} \xrightarrow{\text{analytically}} \mathcal{M}_0(\mathcal{H}^{\infty}(B_{c_0}))$$

Recall that $\mathscr{M}_{z}(\mathscr{H}^{\infty}(B_{X}))=\{\delta_{z}\}$ for $z\in B_{X}$ when X is finite dimensional.

The situation for **infinite dimensional X** is quite different.

R. M. Aron. B. J. Cole. T. W. Gamelin. 1991

• Suppose X is infinite dimensional. Then the fiber $\mathcal{M}_z(\mathcal{H}^{\infty}(B_X))$ over any $z \in \overline{B}_{X^{**}}$ contains a copy of $\beta \mathbb{N} \setminus \mathbb{N}$.

$$\circ \ B_{\ell_{\infty}} \xrightarrow{\text{analytically}} \mathcal{M}_0(\mathcal{H}^{\infty}(B_{c_0})).$$

Recall that $\mathscr{M}_{z}(\mathscr{H}^{\infty}(B_{X}))=\{\delta_{z}\}$ for $z\in B_{X}$ when X is finite dimensional.

The situation for **infinite dimensional X** is quite different.

R. M. Aron, B. J. Cole, T. W. Gamelin, 1991

• Suppose X is infinite dimensional. Then the fiber $\mathcal{M}_z(\mathscr{H}^\infty(B_X))$ over any $z\in \overline{B}_{X^{**}}$ contains a copy of $\beta\mathbb{N}\setminus\mathbb{N}$.

$$\circ B_{\ell_\infty} \overset{\text{analytically}}{\longleftarrow} \mathscr{M}_0(\mathscr{H}^\infty(B_{c_0})).$$

Recall that $\mathscr{M}_{z}(\mathscr{H}^{\infty}(B_{X}))=\{\delta_{z}\}$ for $z\in B_{X}$ when X is finite dimensional.

The situation for **infinite dimensional X** is quite different.

R. M. Aron, B. J. Cole, T. W. Gamelin, 1991

- Suppose X is infinite dimensional. Then the fiber $\mathcal{M}_z(\mathscr{H}^\infty(B_X))$ over any $z\in \overline{B}_{X^{**}}$ contains a copy of $\beta\mathbb{N}\setminus\mathbb{N}$.
- $\circ \ B_{\ell_\infty} \xrightarrow[Gleason \ isometrically]{analytically}} \mathscr{M}_0(\mathscr{H}^\infty(B_{c_0})).$

R. M. Aron, J. Falcó, D. García, M. Maestre, 2018

$$B_{\ell_\infty} \stackrel{\mathit{analytically}}{\longleftrightarrow} \mathscr{M}_{\mathcal{Z}}(\mathscr{H}^\infty(B_{c_0}))$$

where $z=(z_1,z_2,\dots)$ be a point of the distinguished boundary \mathbb{T}^{\aleph_0} of $\overline{B}_{\ell_\infty}$ (i.e., $|z_j|=1$ for all $j\in\mathbb{N}$).

R. M. Aron, B. J. Cole, T. W. Gamelin, 1991 + R. M. Aron, J. Falcó, D. García, M. Maestre, 2018

$$B_{\ell_\infty} \stackrel{\mathit{analytically}}{\longleftrightarrow} \mathscr{M}_{\mathcal{Z}}(\mathscr{H}^\infty(B_{c_0}))$$

where z=0 or $z=(z_1,z_2,\dots)$ be a point of the distinguished boundary \mathbb{T}^{\aleph_0} of $\overline{B}_{\ell_\infty}$ (i.e., $|z_j|=1$ for all $j\in\mathbb{N}$).

Question: Can $B_{\ell_{\infty}}$ be embedded in the fiber $\mathcal{M}_z(\mathcal{H}^{\infty}(B_{c_0}))$ when $z=(z_n)$ is in the unit sphere of ℓ_{∞} but $|z_n|<1$ for all $n\in\mathbb{N}$, for example, $z_n=\frac{n-1}{n}$?

R. M. Aron, B. J. Cole, T. W. Gamelin, 1991 + R. M. Aron, J. Falcó, D. García, M. Maestre, 2018

$$B_{\ell_\infty} \stackrel{\mathit{analytically}}{-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!-} \mathscr{M}_{\mathcal{Z}}(\mathscr{H}^\infty(B_{c_0}))$$

where z=0 or $z=(z_1,z_2,\dots)$ be a point of the distinguished boundary \mathbb{T}^{\aleph_0} of $\overline{B}_{\ell_\infty}$ (i.e., $|z_j|=1$ for all $j\in\mathbb{N}$).

Question: Can B_{ℓ_∞} be embedded in the fiber $\mathscr{M}_z(\mathscr{H}^\infty(B_{c_0}))$ when $z=(z_n)$ is in the unit sphere of ℓ_∞ but $|z_n|<1$ for all $n\in\mathbb{N}$, for example, $z_n=\frac{n-1}{n}$?

Choi-Falcó-García-J-Maestre, 2019

For every natural number N and every $z \in \overline{B}_{\ell_m}$,

$$\underbrace{B_{\ell_\infty} \times \cdots \times B_{\ell_\infty}}_{N\text{-times}} \overset{\textit{analytically}}{\subseteq} \mathscr{M}_{\mathbf{Z}}(\mathscr{H}^\infty(B_{c_0})).$$

Choi-Falcó-García-J-Maestre, 2019

If K is countably infinite scattered compact Hausdorff,

$$B_{\ell_\infty} \stackrel{\mathit{analytically}}{\longleftrightarrow} \mathscr{M}_{\mathit{u}}(\mathscr{H}^\infty(B_{C(K)})).$$

for every $z \in \overline{B}_{C(K)^{**}}$,

B. J. Cole, T. W. Gamelin, W. B. Johnson, 1991

Suppose X has a normalized shrinking basis $\{e_j\}$. Suppose that there is an integer $N \geq 1$ such that

$$\sum_{j} \left| e_{j}^{*}(x) \right|^{N} < \infty$$

for all $x = \sum_j e_j^*(x)e_j$ in X. Then

$$B_{\ell_\infty} \stackrel{\mathit{analytically}}{\longleftrightarrow} \mathscr{M}_0(\mathscr{H}^\infty(B_X)).$$

Note that this result applies to the spaces ℓ_p and $L_p[0,1]$ for 1

B. J. Cole, T. W. Gamelin, W. B. Johnson, 1991

Suppose X has a normalized shrinking basis $\{e_j\}$. Suppose that there is an integer $N\geq 1$ such that

$$\sum_{j} \left| e_{j}^{*}(x) \right|^{N} < \infty$$

for all $x = \sum_j e_j^*(x)e_j$ in X. Then

$$B_{\ell_\infty} \stackrel{\mathit{analytically}}{\longleftrightarrow} \mathscr{M}_0(\mathscr{H}^\infty(B_X)).$$

Note that this result applies to the spaces ℓ_p and $L_p[0,1]$ for 1 .

Choi-Falcó-García-J-Maestre, 2019

Suppose X has a normalized shrinking basis $\{e_j\}$. Suppose that there is an integer N > 1 such that

$$\sum_{j} \left| e_{j}^{*}(x) \right|^{N} < \infty$$

for all $x = \sum_{i} e_{i}^{*}(x)e_{j}$ in X. Then

• for any $z \in B_X$,

$$B_{\ell_\infty} \stackrel{\mathit{analytically}}{ \longleftrightarrow} \mathscr{M}_{\mathcal{Z}}(\mathscr{H}^\infty(B_X)).$$

• if X has a normalized shrinking monotone basis, then for any $z \in B_{X^{**}}$

$$B_{\ell_{\infty}} \stackrel{\text{analytically}}{\longleftrightarrow} \mathscr{M}_{z}(\mathscr{H}^{\infty}(B_{X})).$$

Choi-Falcó-García-J-Maestre, 2019

Suppose X has a normalized shrinking basis $\{e_j\}$. Suppose that there is an integer N > 1 such that

$$\sum_{j} \left| e_{j}^{*}(x) \right|^{N} < \infty$$

for all $x = \sum_{i} e_{i}^{*}(x)e_{j}$ in X. Then

• for any $z \in B_X$,

$$B_{\ell_\infty} \stackrel{\mathit{analytically}}{\longleftrightarrow} \mathscr{M}_{\mathcal{Z}}(\mathscr{H}^\infty(B_X)).$$

• if X has a normalized shrinking monotone basis, then for any $z \in B_{X^*}$,

$$B_{\ell_{\infty}} \stackrel{\text{analytically}}{\longleftrightarrow} \mathscr{M}_{z}(\mathscr{H}^{\infty}(B_{X})).$$

Question 0: Does the Corona Theorem hold in $\mathscr{H}^{\infty}(U)$ for any domain U of \mathbb{C} ?

Question 1: Does the Corona Theorem hold in $\mathscr{H}^\infty(\mathbb{D}^n)$ or $\mathscr{H}^\infty(B_{\ell_2^n})$ for any $n \geq 2$?

Question 2: From the last result, we have that for $1 and <math>z \in B_{\ell_p}$

$$B_{\ell_\infty} \stackrel{\mathit{analytically}}{\longleftrightarrow} \mathscr{M}_{\mathbf{Z}}(\mathscr{H}^\infty(B_{\ell_p})).$$

Can B_{ℓ_∞} be embedded in the fiber $\mathscr{M}_z(\mathscr{H}^\infty(B_{\ell_p}))$ when $z\in S_{\ell_p}$?

Question 3: Can $B_{\ell_{\infty}}$ be embedded in the fiber $\mathscr{M}_z(\mathscr{H}^{\infty}(B_{\ell_1}))$ when $z\in \overline{B}_{\ell_1^{**}}$?

