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Three classical function spaces on the unit disc D

the Bergman space A2, consisting of all functions f ∈ Hol(D)
with ∫

D
|f (z)|2dA(z) <∞, dA(z) =

dxdy

π
,

the Hardy space H2, consisting of all functions f ∈ Hol(D)
with

sup
0<r<1

1

2π

∫ 2π

0
|f (re iθ)|2dθ <∞,

the Dirichlet space D, consisting of all functions f ∈ Hol(D)
with ∫

D
|f ′(z)|2dA(z) <∞.
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Dirichlet-type spaces Dα

The spaces A2, H2, and D belong to the broad family of
“Dirichlet-type spaces Dα”(for α = −1, 0, 1 respectively):

Definition: For α ∈ R, the space Dα consists of all functions
f ∈ Hol(D) whose Taylor coefficients in the expansion

f (z) =
∞∑
k=0

akz
k , z ∈ D,

satisfy

‖f ‖2α =
∞∑
k=0

(k + 1)α|ak |2 <∞.

For two functions f (z) =
∑∞

k=0 akz
k and g(z) =

∑∞
k=0 bkz

k

in Dα, by considering the associated inner product

〈f , g〉α =
∞∑
k=0

(k + 1)αakbk ,

the space Dα becomes a (reproducing kernel) Hilbert space.
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Cyclicity

• A function f ∈ Dα is said to be cyclic in Dα if

span{zk f : k = 0, 1, 2, . . . } = Dα

or equivalently:
if there exists a sequence of polynomials {pn}∞n=1 such that

‖pnf − 1‖α → 0, as n→∞.

Remarks:

• f is cyclic ⇒ f is zero-free on D.

• For H2 (Beurling): f is cyclic ⇔ f is outer.

• For D (Brown and Shields): f is cyclic ⇒ f is outer and
{ζ ∈ ∂D : limr→1− f (rζ) = 0} is of logarithmic capacity 0.
⇐: still open! (Brown-Shields Conjecture)
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Optimal Polynomial Approximants (O.P.A.)

Let f ∈ Dα and Pn be the space of polynomials of degree ≤ n.

Definition

We say that a polynomial pn ∈ Pn is an optimal polynomial
approximant (o.p.a.) of order n to 1/f if pn minimizes ‖pf − 1‖α
among all polynomials p ∈ Pn.

Remark:

‖pnf − 1‖α = distDα(1, f · Pn) and

pnf is the orthogonal projection of 1 onto the subspace f · Pn.
Thus, for any f ∈ Dα \ {0} and any degree n ≥ 0, the o.p.a.
pn to 1/f always exist and are unique.
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O.P.A. and Cyclicity

♣ Notation: Given f ∈ Dα \ {0}, let Qn(1/f ) denote the o.p.a. of
order n to 1/f .

• Remark: T.F.A.E.

1 f is cyclic in Dα.

2 ‖Qn(1/f ) · f − 1‖α → 0.

3 Qn(1/f )→ 1/f uniformly on compact subsets of D.

4 Qn(1/f )(0)→ 1/f (0) as n→∞.
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Main Question

I Question: Which is the behaviour of the sequence
(Qn(1/f )) on the unit circle?
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Known cases

In this talk we will focus on o.p.a. for the Hardy space H2.

If f is inner (i.e. f bounded on D and | limr→1− f (rζ)| = 1 for
a.e. ζ ∈ ∂D) then Qn(1/f ) = f (0) for each n ∈ N.

If f is holomorphic and zero-free on {z : |z | < 1 + ε} for some
ε > 0 then, for each ζ in the unit circle, Qn(1/f )(ζ)→ 1/f (ζ)
as n→∞.

(Bénéteau, M., Seco) If f is a polynomial with only simple
roots, all of which lying outside D, then Qn(1/f )→ 1/f
uniformly on compact subsets of D \ {z ∈ ∂D : f (z) = 0}.
Moreover, the sequence (Qn(1/f ) · f − 1)n∈N is uniformly
bounded on D.
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Main result

In all the previous cases, for each ζ in the unit circle, the
set {Qn(1/f )(ζ) : n ∈ N} has only one limit point.
I Question: Is this always the case?

We will see that it is possible to find a (cyclic) function f ∈ H2

such that {Qn(1/f )(ζ) : n ∈ N} dense in C for some ζ in ∂D.

� Theorem 1 (Bénéteau, Ivrii, M., Seco)
Let E ⊂ ∂D be a closed set of arclength measure zero. Then
UE :=

{f ∈ H2 \ {0} : ∀g ∈ C (E ) ∃(Qms (1/f )) : Qms (1/f )→ g in C (E )}

is a dense Gδ set in H2. In particular, UE 6= ∅.

• Remark: The assumption on E cannot be dispensed with.

Myrto Manolaki (University College Dublin)



Main result

In all the previous cases, for each ζ in the unit circle, the
set {Qn(1/f )(ζ) : n ∈ N} has only one limit point.
I Question: Is this always the case?

We will see that it is possible to find a (cyclic) function f ∈ H2

such that {Qn(1/f )(ζ) : n ∈ N} dense in C for some ζ in ∂D.
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O.P.A. of cyclic functions can behave chaotically on ∂D

I Corollaries
Let E ⊂ ∂D be a closed set of arclength measure zero.

1 There exists a function f ∈ UE which is cyclic.

In this case, Qn(1/f )(z) converges to 1/f (z) for all z ∈ D,
while

{
Qn(1/f )(ζ) : n ∈ N

}
is dense for all ζ ∈ E ⊂ ∂D!

2 Let (zn) be a (finite or infinite) sequence in D \ {0} which
satisfies the Blaschke condition

∞∑
n=1

(1− |zn|) <∞.

Then there exists a function f ∈ UE having zeros at (zn).
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Proof of the Corollaries

Proposition
If g is an inner function in H2 and f ∈ H2 \ {0}, then, for each
n ∈ N,

Qn

(
1/(g · f )

)
= g(0) · Qn(1/f ).

Thus, if we additionally assume that g(0) 6= 0,

f ∈ UE ⇔ g · f ∈ UE .

1 If E is as in Theorem 1 ⇒ ∃ F ∈ UE . Since F ∈ H2, we can
write F = FI · FO , where FI is inner and FO is outer. Hence
FO ∈ UE and is cyclic (as an outer function).

2 We can obtain the function of Corollary 2 by multiplying the
function FO ∈ UE which is cyclic (and so zero-free on D) with
a suitable Blaschke product (which is inner).
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What is behind the proof of Theorem 1?

Let {Pn : n ∈ N} be the set of polynomials with coefficients in
Q + iQ which do not vanish on E . For each k, n,m ∈ N we define:

Ek,n,m = {f ∈ H2 \ {0} : ‖Qm(1/f )− Pn‖C(E) < 1/k}.

We observe that:

UE =
∞⋂

k,n=1

∞⋃
m=1

Ek,n,m.

In view of the Baire category theorem, it suffices to show:

Proposition (1)

For each k, n,m ∈ N, we have that Ek,n,m is open in H2.

Proposition (2)

For each k, n ∈ N, we have that
⋃∞

m=1 Ek,n,m is dense in H2.
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What is behind Proposition (1) and (2)?

1 To show Proposition (1) we had to establish that, for each
fixed n, the mapping Qn : H2 \ {0} → C (E ) with
Qn(f ): the nth o.p.a. to 1/f (restricted on E ) is continuous.

2 To show Proposition (2) we had to prove a new result on
simultaneous zero-free approximation.

• Remark: If we drop the ‘zero-free’ part, the corresponding result
had been established by Beise and Müller, who used functional
analysis techniques which could not be adapted to our case.
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Simultaneous Zero-Free Approximation

� Theorem 2 (Bénéteau, Ivrii, M., Seco)
Let E ⊂ ∂D be a closed set of arclength measure zero. ∀f ∈ H2

zero-free on D and ∀g ∈ C (E ) zero-free on E and ∀ε > 0, there is
a polynomial P with no zeros on D such that ‖f − P‖H2 < ε and
‖g − P‖C(E) < ε.
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Further directions

1 We recently established an analogue of Theorem 1 for the
Dirichlet space D, by providing an analogous zero-free
approximation result on D × C (E ), where E ⊂ ∂D has zero
logarithmic capacity.

2 Is it possible to obtain an analogue of Theorem 1 for the
Bergman space A2 on some sets E of positive arclength
measure?

3 What is the behaviour of o.p.a on sets E that are not
necessarily contained in the unit circle?
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