Optimal Polynomial Approximation in Function Spaces

Myrto Manolaki (University College Dublin)

Joint work with C. Bénéteau, O. Ivrii, D. Seco

V Congreso de Jóvenes Investigadores de la RSME 29 January 2020

Three classical function spaces on the unit disc \mathbb{D}

• the Bergman space A^2 , consisting of all functions $f \in Hol(\mathbb{D})$ with

$$\int_{\mathbb{D}} |f(z)|^2 dA(z) < \infty, \quad dA(z) = \frac{dxdy}{\pi},$$

• the *Hardy space H*², consisting of all functions $f \in Hol(\mathbb{D})$ with

$$\sup_{0 < r < 1} \frac{1}{2\pi} \int_0^{2\pi} |f(r\mathrm{e}^{i\theta})|^2 d\theta < \infty,$$

• the *Dirichlet space D*, consisting of all functions $f \in Hol(\mathbb{D})$ with

$$\int_{\mathbb{R}} |f'(z)|^2 dA(z) < \infty$$

Three classical function spaces on the unit disc \mathbb{D}

• the Bergman space A^2 , consisting of all functions $f \in Hol(\mathbb{D})$ with

$$\int_{\mathbb{D}} |f(z)|^2 dA(z) < \infty, \quad dA(z) = \frac{dxdy}{\pi},$$

• the *Hardy space H*², consisting of all functions $f \in \text{Hol}(\mathbb{D})$ with

$$\sup_{0< r<1} \ \frac{1}{2\pi} \int_0^{2\pi} |f(r\mathrm{e}^{i\theta})|^2 d\theta < \infty,$$

• the *Dirichlet space D*, consisting of all functions $f \in Hol(\mathbb{D})$ with

$$\int_{\mathbb{D}} |f'(z)|^2 dA(z) < \infty.$$

Three classical function spaces on the unit disc \mathbb{D}

• the Bergman space A^2 , consisting of all functions $f \in Hol(\mathbb{D})$ with

$$\int_{\mathbb{D}} |f(z)|^2 dA(z) < \infty, \quad dA(z) = \frac{dxdy}{\pi},$$

• the *Hardy space H*², consisting of all functions $f \in Hol(\mathbb{D})$ with

$$\sup_{0 \le r \le 1} \frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta})|^2 d\theta < \infty,$$

• the *Dirichlet space D*, consisting of all functions $f \in Hol(\mathbb{D})$ with

$$\int_{\mathbb{D}} |f'(z)|^2 dA(z) < \infty.$$

Dirichlet-type spaces D_{α}

The spaces A^2 , H^2 , and D belong to the broad family of "Dirichlet-type spaces D_{α} " (for $\alpha = -1, 0, 1$ respectively):

• **Definition:** For $\alpha \in \mathbb{R}$, the space D_{α} consists of all functions $f \in \text{Hol}(\mathbb{D})$ whose Taylor coefficients in the expansion

$$f(z) = \sum_{k=0}^{\infty} a_k z^k, \quad z \in \mathbb{D},$$

satisfy

$$||f||_{\alpha}^{2} = \sum_{k=0}^{\infty} (k+1)^{\alpha} |a_{k}|^{2} < \infty.$$

• For two functions $f(z) = \sum_{k=0}^{\infty} a_k z^k$ and $g(z) = \sum_{k=0}^{\infty} b_k z^k$ in D_{α} , by considering the associated inner product

$$\langle f, g \rangle_{\alpha} = \sum_{k=0}^{\infty} (k+1)^{\alpha} a_k \overline{b_k},$$

the space D_lpha becomes a (reproducing kernel) Hilbert space

Myrto Manolaki (University College Dublin)

Dirichlet-type spaces D_{α}

The spaces A^2 , H^2 , and D belong to the broad family of "Dirichlet-type spaces D_{α} " (for $\alpha = -1, 0, 1$ respectively):

• **Definition:** For $\alpha \in \mathbb{R}$, the space D_{α} consists of all functions $f \in \text{Hol}(\mathbb{D})$ whose Taylor coefficients in the expansion

$$f(z) = \sum_{k=0}^{\infty} a_k z^k, \quad z \in \mathbb{D},$$

satisfy

$$||f||_{\alpha}^{2} = \sum_{k=0}^{\infty} (k+1)^{\alpha} |a_{k}|^{2} < \infty.$$

• For two functions $f(z) = \sum_{k=0}^{\infty} a_k z^k$ and $g(z) = \sum_{k=0}^{\infty} b_k z^k$ in D_{α} , by considering the associated inner product

$$\langle f, g \rangle_{\alpha} = \sum_{k=0}^{\infty} (k+1)^{\alpha} a_k \overline{b_k},$$

the space D_{α} becomes a (reproducing kernel) Hilbert space.

• A function $f \in D_{\alpha}$ is said to be **cyclic** in D_{α} if

$$\overline{\operatorname{span}\{z^k f \colon k=0,1,2,\dots\}} = D_{\alpha}$$

or equivalently:

if there exists a sequence of polynomials $\{p_n\}_{n=1}^\infty$ such that

$$\|p_n f - 1\|_{\alpha} \to 0$$
, as $n \to \infty$.

- f is cyclic $\Rightarrow f$ is zero-free on \mathbb{D} .
- For H^2 (Beurling): f is cyclic $\Leftrightarrow f$ is outer.
- For D (Brown and Shields): f is cyclic $\Rightarrow f$ is outer and $\{\zeta \in \partial \mathbb{D} : \lim_{r \to 1^-} f(r\zeta) = 0\}$ is of logarithmic capacity 0. \Leftarrow : still open! (Brown-Shields Conjecture)

• A function $f \in D_{\alpha}$ is said to be **cyclic** in D_{α} if

$$\overline{\operatorname{span}\{z^kf\colon k=0,1,2,\dots\}}=D_\alpha$$

or equivalently:

if there exists a sequence of polynomials $\{p_n\}_{n=1}^{\infty}$ such that

$$\|p_n f - 1\|_{\alpha} \to 0$$
, as $n \to \infty$.

- f is cyclic $\Rightarrow f$ is zero-free on \mathbb{D} .
- For H^2 (Beurling): f is cyclic $\Leftrightarrow f$ is outer.
- For D (Brown and Shields): f is cyclic $\Rightarrow f$ is outer **and** $\{\zeta \in \partial \mathbb{D} : \lim_{r \to 1^-} f(r\zeta) = 0\}$ is of logarithmic capacity 0. \Leftarrow : still open! (Brown-Shields Conjecture)

• A function $f \in D_{\alpha}$ is said to be **cyclic** in D_{α} if

$$\overline{\operatorname{span}\{z^kf\colon k=0,1,2,\dots\}}=D_\alpha$$

or equivalently:

if there exists a sequence of polynomials $\{p_n\}_{n=1}^{\infty}$ such that

$$\|p_n f - 1\|_{\alpha} \to 0$$
, as $n \to \infty$.

- f is cyclic $\Rightarrow f$ is zero-free on \mathbb{D} .
- For H^2 (Beurling): f is cyclic $\Leftrightarrow f$ is outer.
- For D (Brown and Shields): f is cyclic $\Rightarrow f$ is outer **and** $\{\zeta \in \partial \mathbb{D} : \lim_{r \to 1^-} f(r\zeta) = 0\}$ is of logarithmic capacity 0. \Leftarrow : still open! (Brown-Shields Conjecture)

• A function $f \in D_{\alpha}$ is said to be **cyclic** in D_{α} if

$$\overline{\operatorname{span}\{z^k f \colon k=0,1,2,\dots\}} = D_{\alpha}$$

or equivalently:

if there exists a sequence of polynomials $\{p_n\}_{n=1}^{\infty}$ such that

$$\|p_n f - 1\|_{\alpha} \to 0$$
, as $n \to \infty$.

- f is cyclic $\Rightarrow f$ is zero-free on \mathbb{D} .
- For H^2 (Beurling): f is cyclic $\Leftrightarrow f$ is outer.
- For D (Brown and Shields): f is cyclic $\Rightarrow f$ is outer and $\{\zeta \in \partial \mathbb{D} : \lim_{r \to 1^-} f(r\zeta) = 0\}$ is of logarithmic capacity 0. \Leftarrow : still open! (Brown-Shields Conjecture)

• A function $f \in D_{\alpha}$ is said to be **cyclic** in D_{α} if

$$\overline{\operatorname{span}\{z^k f \colon k=0,1,2,\dots\}} = D_{\alpha}$$

or equivalently:

if there exists a sequence of polynomials $\{p_n\}_{n=1}^{\infty}$ such that

$$\|p_n f - 1\|_{\alpha} \to 0$$
, as $n \to \infty$.

- f is cyclic $\Rightarrow f$ is zero-free on \mathbb{D} .
- For H^2 (Beurling): f is cyclic $\Leftrightarrow f$ is outer.
- For D (Brown and Shields): f is cyclic $\Rightarrow f$ is outer **and** $\{\zeta \in \partial \mathbb{D} : \lim_{r \to 1^-} f(r\zeta) = 0\}$ is of logarithmic capacity 0. \Leftarrow : still open! (Brown-Shields Conjecture)

Optimal Polynomial Approximants (O.P.A.)

Let $f \in D_{\alpha}$ and \mathcal{P}_n be the space of polynomials of degree $\leq n$.

Definition

We say that a polynomial $p_n \in \mathcal{P}_n$ is an **optimal polynomial** approximant (o.p.a.) of order n to 1/f if p_n minimizes $||pf - 1||_{\alpha}$ among all polynomials $p \in \mathcal{P}_n$.

Remark:

$$\|p_n f - 1\|_{\alpha} = \operatorname{dist}_{D_{\alpha}}(1, f \cdot \mathcal{P}_n)$$
 and

 $p_n f$ is the orthogonal projection of 1 onto the subspace $f \cdot \mathcal{P}_n$. Thus, for any $f \in D_\alpha \setminus \{0\}$ and any degree $n \geq 0$, the o.p.a. p_n to 1/f always **exist** and are **unique**.

Optimal Polynomial Approximants (O.P.A.)

Let $f \in D_{\alpha}$ and \mathcal{P}_n be the space of polynomials of degree $\leq n$.

Definition

We say that a polynomial $p_n \in \mathcal{P}_n$ is an **optimal polynomial** approximant (o.p.a.) of order n to 1/f if p_n minimizes $\|pf - 1\|_{\alpha}$ among all polynomials $p \in \mathcal{P}_n$.

Remark:

$$\|p_n f - 1\|_{\alpha} = \operatorname{dist}_{D_{\alpha}}(1, f \cdot \mathcal{P}_n)$$
 and

 $p_n f$ is the orthogonal projection of 1 onto the subspace $f \cdot \mathcal{P}_n$. Thus, for any $f \in D_\alpha \setminus \{0\}$ and any degree $n \ge 0$, the o.p.a. p_n to 1/f always **exist** and are **unique**.

O.P.A. and Cyclicity

- **A** Notation: Given $f \in D_{\alpha} \setminus \{0\}$, let $Q_n(1/f)$ denote the o.p.a. of order n to 1/f.
- Remark: T.F.A.E.
 - \bigcirc *f* is cyclic in D_{α} .
 - $Q_n(1/f) \cdot f 1|_{\alpha} \to 0.$
 - \bigcirc $Q_n(1/f) o 1/f$ uniformly on compact subsets of \mathbb{D} .
 - $Q_n(1/f)(0) \rightarrow 1/f(0)$ as $n \rightarrow \infty$.

O.P.A. and Cyclicity

- **A** Notation: Given $f \in D_{\alpha} \setminus \{0\}$, let $Q_n(1/f)$ denote the o.p.a. of order n to 1/f.
- Remark: T.F.A.E.
 - \bigcirc *f* is cyclic in D_{α} .
 - $Q_n(1/f) \cdot f 1|_{\alpha} \to 0.$
 - \bigcirc $Q_n(1/f) \rightarrow 1/f$ uniformly on compact subsets of \mathbb{D} .
 - $Q_n(1/f)(0) \to 1/f(0) \text{ as } n \to \infty.$

Main Question

▶ Question: Which is the behaviour of the sequence $(Q_n(1/f))$ on the unit circle?

or

- If f is inner (i.e. f bounded on $\underline{\mathbb{D}}$ and $|\lim_{r\to 1^-} f(r\zeta)| = 1$ for a.e. $\zeta \in \partial \mathbb{D}$) then $Q_n(1/f) = \overline{f(0)}$ for each $n \in \mathbb{N}$.
- If f is holomorphic and zero-free on $\{z: |z| < 1 + \varepsilon\}$ for some $\varepsilon > 0$ then, for each ζ in the unit circle, $Q_n(1/f)(\zeta) \to 1/f(\zeta)$ as $n \to \infty$.
- (Bénéteau, M., Seco) If f is a polynomial with only simple roots, all of which lying outside \mathbb{D} , then $Q_n(1/f) \to 1/f$ uniformly on compact subsets of $\overline{\mathbb{D}} \setminus \{z \in \partial \mathbb{D} : f(z) = 0\}$. Moreover, the sequence $(Q_n(1/f) \cdot f 1)_{n \in \mathbb{N}}$ is uniformly bounded on $\overline{\mathbb{D}}$.

- If f is inner (i.e. f bounded on $\underline{\mathbb{D}}$ and $|\lim_{r\to 1^-} f(r\zeta)| = 1$ for a.e. $\zeta \in \partial \mathbb{D}$) then $Q_n(1/f) = \overline{f(0)}$ for each $n \in \mathbb{N}$.
- If f is holomorphic and zero-free on $\{z: |z| < 1 + \varepsilon\}$ for some $\varepsilon > 0$ then, for each ζ in the unit circle, $Q_n(1/f)(\zeta) \to 1/f(\zeta)$ as $n \to \infty$.
- (Bénéteau, M., Seco) If f is a polynomial with only simple roots, all of which lying outside \mathbb{D} , then $Q_n(1/f) \to 1/f$ uniformly on compact subsets of $\overline{\mathbb{D}} \setminus \{z \in \partial \mathbb{D} : f(z) = 0\}$. Moreover, the sequence $(Q_n(1/f) \cdot f 1)_{n \in \mathbb{N}}$ is uniformly bounded on $\overline{\mathbb{D}}$.

- If f is inner (i.e. f bounded on $\underline{\mathbb{D}}$ and $|\lim_{r\to 1^-} f(r\zeta)| = 1$ for a.e. $\zeta \in \partial \mathbb{D}$) then $Q_n(1/f) = \overline{f(0)}$ for each $n \in \mathbb{N}$.
- If f is holomorphic and zero-free on $\{z: |z| < 1 + \varepsilon\}$ for some $\varepsilon > 0$ then, for each ζ in the unit circle, $Q_n(1/f)(\zeta) \to 1/f(\zeta)$ as $n \to \infty$.
- (Bénéteau, M., Seco) If f is a polynomial with only simple roots, all of which lying outside \mathbb{D} , then $Q_n(1/f) \to 1/f$ uniformly on compact subsets of $\overline{\mathbb{D}} \setminus \{z \in \partial \mathbb{D} : f(z) = 0\}$. Moreover, the sequence $(Q_n(1/f) \cdot f 1)_{n \in \mathbb{N}}$ is uniformly bounded on $\overline{\mathbb{D}}$.

- If f is inner (i.e. f bounded on $\mathbb D$ and $|\lim_{r\to 1^-} f(r\zeta)| = 1$ for a.e. $\zeta\in\partial\mathbb D$) then $Q_n(1/f)=\overline{f(0)}$ for each $n\in\mathbb N$.
- If f is holomorphic and zero-free on $\{z: |z| < 1 + \varepsilon\}$ for some $\varepsilon > 0$ then, for each ζ in the unit circle, $Q_n(1/f)(\zeta) \to 1/f(\zeta)$ as $n \to \infty$.
- (Bénéteau, M., Seco) If f is a polynomial with only simple roots, all of which lying outside \mathbb{D} , then $Q_n(1/f) \to 1/f$ uniformly on compact subsets of $\overline{\mathbb{D}} \setminus \{z \in \partial \mathbb{D} : f(z) = 0\}$. Moreover, the sequence $(Q_n(1/f) \cdot f 1)_{n \in \mathbb{N}}$ is uniformly bounded on $\overline{\mathbb{D}}$.

- * In all the previous cases, for each ζ in the unit **circle**, the set $\{Q_n(1/f)(\zeta) : n \in \mathbb{N}\}$ has only **one limit point**.
- ▶ Question: Is this always the case?

We will see that it is possible to find a (cyclic) function $f \in H^2$ such that $\{Q_n(1/f)(\zeta) : n \in \mathbb{N}\}$ dense in \mathbb{C} for some ζ in $\partial \mathbb{D}$.

■ Theorem 1 (Bénéteau, Ivrii, M., Seco)

Let $E\subset\partial\mathbb{D}$ be a closed set of **arclength measure zero**. Then $\mathcal{U}_E:=$

$$\{f \in H^2 \setminus \{0\} : \forall g \in C(E) \exists (Q_{m_s}(1/f)) : Q_{m_s}(1/f) \to g \text{ in } C(E)\}$$

is a dense G_δ set in H^2 . In particular, $\mathcal{U}_E
eq \emptyset$.

- * In all the previous cases, for each ζ in the unit **circle**, the set $\{Q_n(1/f)(\zeta) : n \in \mathbb{N}\}$ has only **one limit point**.
- ▶ Question: Is this always the case?

We will see that it is possible to find a (cyclic) function $f \in H^2$ such that $\{Q_n(1/f)(\zeta) : n \in \mathbb{N}\}$ dense in \mathbb{C} for some ζ in $\partial \mathbb{D}$.

■ Theorem 1 (Bénéteau, Ivrii, M., Seco)
Let $E \subset \partial \mathbb{D}$ be a closed set of arclength measure zero. Then $\mathcal{U}_E :=$

$$\{f \in H^2 \setminus \{0\} : \forall g \in C(E) \ \exists (Q_{m_s}(1/f)) : Q_{m_s}(1/f) \to g \text{ in } C(E)\}$$
 is a dense G_{δ} set in H^2 . In particular, $\mathcal{U}_E \neq \emptyset$.

- * In all the previous cases, for each ζ in the unit **circle**, the set $\{Q_n(1/f)(\zeta) : n \in \mathbb{N}\}$ has only **one limit point**.
- ▶ Question: Is this always the case?

We will see that it is possible to find a (cyclic) function $f \in H^2$ such that $\{Q_n(1/f)(\zeta) : n \in \mathbb{N}\}$ dense in \mathbb{C} for some ζ in $\partial \mathbb{D}$.

■ Theorem 1 (Bénéteau, Ivrii, M., Seco)

Let $E\subset\partial\mathbb{D}$ be a closed set of **arclength measure zero**. Then $\mathcal{U}_E:=$

$$\{f \in H^2 \setminus \{0\} : \forall g \in C(E) \exists (Q_{m_s}(1/f)) : Q_{m_s}(1/f) \to g \text{ in } C(E)\}$$

is a dense G_{δ} set in H^2 . In particular, $\mathcal{U}_E \neq \emptyset$.

- * In all the previous cases, for each ζ in the unit **circle**, the set $\{Q_n(1/f)(\zeta) : n \in \mathbb{N}\}$ has only **one limit point**.
- ▶ Question: Is this always the case?

We will see that it is possible to find a (cyclic) function $f \in H^2$ such that $\{Q_n(1/f)(\zeta) : n \in \mathbb{N}\}$ dense in \mathbb{C} for some ζ in $\partial \mathbb{D}$.

■ Theorem 1 (Bénéteau, Ivrii, M., Seco) Let $E \subset \partial \mathbb{D}$ be a closed set of arclength measure zero. Then $\mathcal{U}_E :=$

$$\{f \in H^2 \setminus \{0\} : \forall g \in C(E) \ \exists (Q_{m_s}(1/f)) : Q_{m_s}(1/f) \to g \ \text{in} \ C(E)\}$$
 is a dense G_{δ} set in H^2 . In particular, $\mathcal{U}_F \neq \emptyset$.

O.P.A. of cyclic functions can behave chaotically on $\partial \mathbb{D}$

▶ Corollaries

Let $E \subset \partial \mathbb{D}$ be a closed set of **arclength measure zero**.

- There exists a function $f \in \mathcal{U}_E$ which is cyclic.
 - **②** In this case, $Q_n(1/f)(z)$ converges to 1/f(z) for all $z \in \mathbb{D}$, while $\{Q_n(1/f)(\zeta) : n \in \mathbb{N}\}$ is dense for all $\zeta \in E \subset \partial \mathbb{D}$!
- ② Let (z_n) be a (finite or infinite) sequence in $\mathbb{D} \setminus \{0\}$ which satisfies the Blaschke condition

$$\sum_{n=1}^{\infty} (1-|z_n|) < \infty.$$

Then there exists a function $f \in \mathcal{U}_E$ having zeros at (z_n) .

O.P.A. of cyclic functions can behave chaotically on $\partial \mathbb{D}$

▶ Corollaries

Let $E \subset \partial \mathbb{D}$ be a closed set of **arclength measure zero**.

- There exists a function $f \in \mathcal{U}_E$ which is cyclic.
 - **②** In this case, $Q_n(1/f)(z)$ converges to 1/f(z) for all $z \in \mathbb{D}$, while $\{Q_n(1/f)(\zeta) : n \in \mathbb{N}\}$ is dense for all $\zeta \in E \subset \partial \mathbb{D}$!
- ② Let (z_n) be a (finite or infinite) sequence in $\mathbb{D} \setminus \{0\}$ which satisfies the Blaschke condition

$$\sum_{n=1}^{\infty} (1-|z_n|) < \infty.$$

Then there exists a function $f \in \mathcal{U}_E$ having zeros at (z_n) .

Proposition

If g is an inner function in H^2 and $f \in H^2 \setminus \{0\}$, then, for each $n \in \mathbb{N}$,

$$Q_n(1/(g \cdot f)) = \overline{g(0)} \cdot Q_n(1/f).$$

$$f \in \mathcal{U}_E \Leftrightarrow g \cdot f \in \mathcal{U}_E$$
.

- If E is as in Theorem $1 \Rightarrow \exists F \in \mathcal{U}_E$. Since $F \in H^2$, we can write $F = F_I \cdot F_O$, where F_I is **inner** and F_O is **outer**. Hence $F_O \in \mathcal{U}_E$ and is cyclic (as an outer function).
- ② We can obtain the function of Corollary 2 by multiplying the function $F_O \in \mathcal{U}_E$ which is cyclic (and so zero-free on \mathbb{D}) with a suitable Blaschke product (which is inner).

Proposition

If g is an inner function in H^2 and $f \in H^2 \setminus \{0\}$, then, for each $n \in \mathbb{N}$,

$$Q_n(1/(g \cdot f)) = \overline{g(0)} \cdot Q_n(1/f).$$

$$f \in \mathcal{U}_E \Leftrightarrow g \cdot f \in \mathcal{U}_E$$
.

- **①** If *E* is as in Theorem 1 ⇒ ∃ $F \in \mathcal{U}_E$. Since $F \in H^2$, we can write $F = F_I \cdot F_O$, where F_I is inner and F_O is outer. Hence $F_O \in \mathcal{U}_E$ and is cyclic (as an outer function).
- ② We can obtain the function of Corollary 2 by multiplying the function $F_O \in \mathcal{U}_E$ which is cyclic (and so zero-free on \mathbb{D}) with a suitable Blaschke product (which is inner).

Proposition

If g is an inner function in H^2 and $f \in H^2 \setminus \{0\}$, then, for each $n \in \mathbb{N}$,

$$Q_n(1/(g \cdot f)) = \overline{g(0)} \cdot Q_n(1/f).$$

$$f \in \mathcal{U}_E \Leftrightarrow g \cdot f \in \mathcal{U}_E$$
.

- If E is as in Theorem $1 \Rightarrow \exists F \in \mathcal{U}_E$. Since $F \in H^2$, we can write $F = F_I \cdot F_O$, where F_I is **inner** and F_O is **outer**. Hence $F_O \in \mathcal{U}_E$ and is cyclic (as an outer function).
- ② We can obtain the function of Corollary 2 by multiplying the function $F_O \in \mathcal{U}_E$ which is cyclic (and so zero-free on \mathbb{D}) with a suitable Blaschke product (which is inner).

Proposition

If g is an inner function in H^2 and $f \in H^2 \setminus \{0\}$, then, for each $n \in \mathbb{N}$,

$$Q_n(1/(g \cdot f)) = \overline{g(0)} \cdot Q_n(1/f).$$

$$f \in \mathcal{U}_E \Leftrightarrow g \cdot f \in \mathcal{U}_E$$
.

- If E is as in Theorem $1 \Rightarrow \exists F \in \mathcal{U}_E$. Since $F \in H^2$, we can write $F = F_I \cdot F_O$, where F_I is **inner** and F_O is **outer**. Hence $F_O \in \mathcal{U}_E$ and is cyclic (as an outer function).
- ② We can obtain the function of Corollary 2 by multiplying the function $F_O \in \mathcal{U}_E$ which is cyclic (and so zero-free on \mathbb{D}) with a suitable Blaschke product (which is inner).

Proposition

If g is an inner function in H^2 and $f \in H^2 \setminus \{0\}$, then, for each $n \in \mathbb{N}$,

$$Q_n(1/(g \cdot f)) = \overline{g(0)} \cdot Q_n(1/f).$$

$$f \in \mathcal{U}_E \Leftrightarrow g \cdot f \in \mathcal{U}_E$$
.

- If E is as in Theorem $1 \Rightarrow \exists F \in \mathcal{U}_E$. Since $F \in H^2$, we can write $F = F_I \cdot F_O$, where F_I is **inner** and F_O is **outer**. Hence $F_O \in \mathcal{U}_E$ and is cyclic (as an outer function).
- ② We can obtain the function of Corollary 2 by multiplying the function $F_O \in \mathcal{U}_E$ which is cyclic (and so zero-free on \mathbb{D}) with a suitable Blaschke product (which is inner).

What is behind the proof of Theorem 1?

Let $\{P_n : n \in \mathbb{N}\}$ be the set of polynomials with coefficients in $\mathbb{Q} + i\mathbb{Q}$ which do not vanish on E. For each $k, n, m \in \mathbb{N}$ we define:

$$E_{k,n,m} = \{ f \in H^2 \setminus \{0\} : \|Q_m(1/f) - P_n\|_{C(E)} < 1/k \}.$$

We observe that:

$$\mathcal{U}_E = \bigcap_{k,n=1}^{\infty} \bigcup_{m=1}^{\infty} E_{k,n,m}.$$

• In view of the **Baire category theorem**, it suffices to show:

Proposition (1)

For each $k, n, m \in \mathbb{N}$, we have that $E_{k,n,m}$ is **open** in H^2 .

Proposition (2)

For each $k, n \in \mathbb{N}$, we have that $\bigcup_{m=1}^{\infty} E_{k,n,m}$ is dense in H^2 .

What is behind the proof of Theorem 1?

Let $\{P_n : n \in \mathbb{N}\}$ be the set of polynomials with coefficients in $\mathbb{Q} + i\mathbb{Q}$ which do not vanish on E. For each $k, n, m \in \mathbb{N}$ we define:

$$E_{k,n,m} = \{ f \in H^2 \setminus \{0\} : \|Q_m(1/f) - P_n\|_{C(E)} < 1/k \}.$$

• We observe that:

$$\mathcal{U}_E = \bigcap_{k,n=1}^{\infty} \bigcup_{m=1}^{\infty} E_{k,n,m}.$$

• In view of the Baire category theorem, it suffices to show:

Proposition (1)

For each $k, n, m \in \mathbb{N}$, we have that $E_{k,n,m}$ is **open** in H^2 .

Proposition (2)

For each $k, n \in \mathbb{N}$, we have that $\bigcup_{m=1}^{\infty} E_{k,n,m}$ is **dense** in H^2 .

What is behind Proposition (1) and (2)?

- To show Proposition (1) we had to establish that, for each fixed n, the mapping $Q_n: H^2 \setminus \{0\} \to C(E)$ with $Q_n(f)$: the n^{th} o.p.a. to 1/f (restricted on E) is continuous.
- O To show Proposition (2) we had to prove a new result on simultaneous zero-free approximation.
- Remark: If we drop the 'zero-free' part, the corresponding result had been established by Beise and Müller, who used functional analysis techniques which could not be adapted to our case.

What is behind Proposition (1) and (2)?

- **○** To show Proposition (1) we had to establish that, for each fixed n, the mapping $Q_n: H^2 \setminus \{0\} \to C(E)$ with $Q_n(f)$: the n^{th} o.p.a. to 1/f (restricted on E) is continuous.
- ② To show Proposition (2) we had to prove a new result on simultaneous zero-free approximation.
- Remark: If we drop the 'zero-free' part, the corresponding result had been established by Beise and Müller, who used functional analysis techniques which could not be adapted to our case.

What is behind Proposition (1) and (2)?

- **○** To show Proposition (1) we had to establish that, for each fixed n, the mapping $Q_n: H^2 \setminus \{0\} \to C(E)$ with $Q_n(f)$: the n^{th} o.p.a. to 1/f (restricted on E) is continuous.
- ② To show Proposition (2) we had to prove a new result on simultaneous zero-free approximation.
- Remark: If we drop the 'zero-free' part, the corresponding result had been established by Beise and Müller, who used functional analysis techniques which could not be adapted to our case.

Simultaneous Zero-Free Approximation

■ Theorem 2 (Bénéteau, Ivrii, M., Seco)

Let $E \subset \partial \mathbb{D}$ be a closed set of **arclength measure zero**. $\forall f \in H^2$ zero-free on \mathbb{D} and $\forall g \in C(E)$ zero-free on E and $\forall \varepsilon > 0$, there is a polynomial P with **no zeros** on $\overline{\mathbb{D}}$ such that $\|f - P\|_{H^2} < \varepsilon$ and $\|g - P\|_{C(E)} < \varepsilon$.

Further directions

- We recently established an analogue of Theorem 1 for the Dirichlet space D, by providing an analogous zero-free approximation result on $D \times C(E)$, where $E \subset \partial \mathbb{D}$ has **zero logarithmic capacity**.
- Is it possible to obtain an analogue of Theorem 1 for the Bergman space A² on some sets E of positive arclength measure?
- What is the behaviour of o.p.a on sets E that are not necessarily contained in the unit circle?

Further directions

- We recently established an analogue of Theorem 1 for the Dirichlet space D, by providing an analogous zero-free approximation result on $D \times C(E)$, where $E \subset \partial \mathbb{D}$ has **zero logarithmic capacity**.
- ② Is it possible to obtain an analogue of Theorem 1 for the Bergman space A^2 on some sets E of positive arclength measure?
- What is the behaviour of o.p.a on sets E that are not necessarily contained in the unit circle?

Further directions

- We recently established an analogue of Theorem 1 for the Dirichlet space D, by providing an analogous zero-free approximation result on $D \times C(E)$, where $E \subset \partial \mathbb{D}$ has **zero logarithmic capacity**.
- ② Is it possible to obtain an analogue of Theorem 1 for the Bergman space A^2 on some sets E of positive arclength measure?
- What is the behaviour of o.p.a on sets E that are not necessarily contained in the unit circle?

