Generalized Takagi Class

Jesús Llorente

Universidad Complutense de Madrid

January 30th, 2020

Work in collaboration with: Juan Ferrera and Javier Gómez Gil

Contents I

- The Takagi function
- 2 The Takagi class
- Takagi-Van der Waerden functions
- 4 The Generalized Takagi class
- **5** The case $w \in c_0$
- 6 The case $w \notin c_0$

The Takagi function

Let us consider the set $D = \left\{ \frac{k}{2^n} \in [0,1] : k, n \in \mathbb{Z}^+ \right\}$. For every $n \ge 0$, we define the set

$$D_n = \left\{ \frac{k}{2^n} \in [0,1] : k \in \mathbb{Z} \right\}.$$

The Takagi function $T:[0,1] \to \mathbb{R}$ is defined as

$$T(x) = \sum_{n=0}^{\infty} g_n(x)$$

where $g_n(x) = \text{dist}(x, D_n)$ denotes the distance from x to the set D_n .

Jesús Llorente (UCM)

¹T. Takagi, A simple example of the continuous function without derivative, Proc. Phys. Math. Soc. Tokio Ser. II (1) (1903) 176–177.

²P. C. Allaart, K. Kawamura, The improper infinite derivatives of Takagi's nowhere-differentiable function, J. Math. Anal. Appl. 372 (2) (2010) 656–665.

The Takagi function

Theorem (Góra and Stern, 2011)

If $x \in D$, then $\partial T(x) = \mathbb{R}$, otherwise $\partial T(x) = \emptyset$.

Figure: The Takagi function

¹P. Góra and R. J. Stern, Subdifferential analysis of the Van der Waerden function, J. Convex Anal. 18 (3) (2011) 669–705.

The Takagi class

Let us consider the set $D = \left\{ \frac{k}{2^n} \in [0,1] : k, n \in \mathbb{Z}^+ \right\}$. For every $n \ge 0$, we define the set

$$D_n = \left\{ \frac{k}{2^n} \in [0,1] : k \in \mathbb{Z} \right\}.$$

The Takagi class is formed by all the functions $f_w:[0,1] \to \mathbb{R}$ defined by

$$f_w(x) = \sum_{n=0}^{\infty} w_n g_n(x)$$

where $w = (w_n)_n$ satisfies that $\sum_{n=0}^{\infty} |w_n| 2^{-n} < +\infty$.

Proposition (Hata and Yamaguti, 1984)

The Takagi class is a closed subspace of the space of continuous functions C[0,1] isomorphic to ℓ_1 .

Jesús Llorente (UCM) Generalized Takagi Class January 30th, 2020 5 / 17

¹M. Hata and M. Yamaguti, The Takagi function and its generalization, Japan J. Appl. Math. 1 (1) (1984) 183–199.

Kôno's Differentiability Theorem

Theorem (Kôno, 1987)

- **1** If $w \in \ell_2$ then f_w is absolutely continuous and derivable almost everywhere.
- ② If $w \in c_0$ but $w \notin \ell_2$ then f_w is non derivable almost everywhere, but it is derivable in an uncountable subset of [0,1], and the range of f_w' is \mathbb{R} .
- **3** If $w \notin c_0$ then f_w is nowhere derivable.

Jesús Llorente (UCM) Generalized Takagi Class January 30th, 2020

6/17

 $^{^{1}}$ N. Kôno, On generalized Takagi functions, Acta Math. Hungar. 49 (3–4) (1987) 315–324.

Takagi-Van der Waerden functions

Let $r \geq 2$ be an integer and $D = \left\{ \frac{k}{r^n} \in [0,1] : k,n \in \mathbb{Z}^+ \right\}$. We define

$$D_n = \left\{ \frac{k}{r^n} \in [0,1] : k \in \mathbb{Z} \right\}.$$

The Takagi-Van der Waerden function $f_r:[0,1] \to \mathbb{R}$ is defined as

$$f_r(x) = \sum_{n=0}^{\infty} g_n(x)$$

The Takagi-Van der Waerden class

$$f_{r,w}(x) = \sum_{n=0}^{\infty} w_n g_n(x), \quad \text{with } (w_n r^{-n})_n \in \ell_1$$

Jesús Llorente (UCM) Generalized Takagi Class January 30th, 2020

¹B. L. van der Waerden, Ein einfaches Beispiel einer nicht-differenzierbaren stetigen Funktion, Math. Z. 32 (1) (1930) 474–475.

²F. A. Behrend, Some remarks on the construction of continuous non-differentiable functions, Proc. London Math. Soc. (2) 50 (1949) 463–481.

³ J. Ferrera, J. Gómez Gil and J. Llorente, Infinite derivatives of the Takagi-Van der Waerden functions, J. Math. Anal. Appl. 479 (1) (2019) 987–1003.

Surveys on the Takagi function and its generalizations

Surveys

- P. C. Allaart, K. Kawamura, The Takagi function: a survey, Real Anal. Exchange 37 (1) (2011/12) 1–54.
- J. C. Lagarias, The Takagi function and its properties, in: Functions in number theory and their probabilistic aspects, RIMS Kôkyûroku Bessatsu, B34, Res. Inst. Math. Sci. (RIMS), Kyoto, 2012, pp. 153–189.

The Generalized Takagi class

Let D be a countable dense subset of [0,1] such that $0,1\in D$. Let $\mathcal{D}=(D_n)_n$ be a decomposition of D, that is an increasing sequence of finite sets D_n and a sequence $(\alpha_n)_n\in \ell_1$ satisfying:

- $0, 1 \in D_0.$
- $D = \bigcup_n D_n.$
- **③** $|x y| \le \alpha_n$ for every $x, y \in D_n$ such that $(x, y) \cap D_n = \emptyset$.
- There is $\rho \in (0,1]$ such that $|x-y| \ge \rho \alpha_n$ for every $x,y \in D_n$, $x \ne y$.

The Generalized Takagi Class is composed by all the functions $T_w:[0,1]\to\mathbb{R}$ defined by

$$T_w(x) = \sum_{n=0}^{\infty} w_n g_n(x)$$

where $w = (w_n)_n$ satisfies that $(w_n \alpha_n)_n \in \ell_1$.

Jesús Llorente (UCM)

¹J. Ferrera, J. Gómez Gil, Generalized Takagi–Van der Waerden functions and their subdifferentials, J. Convex Anal. 25 (4) (2018) 1355–1369.

Notation and remarks

We denote by

- **①** \mathcal{F}_n the family of connected components of $[0,1] \setminus D_n$.
- $\widetilde{D}_n = \{ \frac{a+b}{2} : a, b \in D_n, (a,b) \cap D_n = \emptyset \}$
- $\mathfrak{D} = \bigcup_n \widetilde{D}_n.$

Takagi-Van der Waerden Class

- ② $\mathcal{D} = (D_n)_n$ with $D_n = \{kr^{-n} \in [0,1] : k \in \mathbb{Z}\}.$

Special properties of the decomposition:

- $\widetilde{D}_n \subset D_{n+1}$ for every n (r even).
- $\widetilde{D}_n \subset \widetilde{D}_{n+1}$ for every $n \ (r \text{ odd})$.

Jesús Llorente (UCM)

¹J. Ferrera and J. Gómez-Gil, Differentiability of the functions of the Generalized Takagi Class, to appear in Rev. Mat. Complut., 2020

Generalization of Kôno's Theorem: The case $w \in c_0$

Theorem (Ferrera and Gómez Gil, 2020)

• If $w \in \ell_2$ and the series

$$\sum_{n\geq 1}\#(\widetilde{D}_{n-1}\setminus D_n)\alpha_n$$

converges, then T_w is absolutely continuous on [0,1] and $T_w'(x) = \sum_n w_n g_n'(x)$ almost everywhere.

• If $w \notin \ell_2$ and the series

$$\sum_{n>1} \#(D_n)\alpha_{n+1}$$

converges, then the set of points where T_w is derivable, denoted by \mathcal{E} , is a null set and $T_w'(\mathcal{E} \cap I) = \mathbb{R}$ for every interval $I \subset [0,1]$.

Jesús Llorente (UCM) Generalized Takagi Class January 30th, 2020

11 / 17

¹J. Ferrera and J. Gómez-Gil, Differentiability of the functions of the Generalized Takagi Class, to appear in Rev. Mat. Complut., 2020 ← □ →

Generalization of Kôno's Theorem: The case $w \notin c_0$

Aim

To prove that under some restrictions on the decomposition, the functions of the Generalized Takagi Class are nowhere derivable provided that $w \notin c_0$.

Theorem (Ferrera, Gómez Gil and Llorente, 2019)

If the decomposition satisfies for every n that either

- ② $I \cap D_{n+1} \neq \emptyset$ for every $I \in \mathcal{F}_n$ and $\widetilde{D}_n \subset \widetilde{D}_{n+1}$,

then T_w is nowhere differentiable if and only if $w \notin c_0$.

¹J. Ferrera, J. Gómez-Gil and J. Llorente, A characterization of the nowhere differentiable functions of the Generalized Takagi Class, Preprint 2019, arXiv:1909.05545v1

Non derivability on D

Proposition

Assume that the decomposition satisfies that for every n, either

- ② $I \cap D_{n+1} \neq \emptyset$ for every $I \in \mathcal{F}_n$ and $\widetilde{D}_n \subset \widetilde{D}_{n+1}$.

Then, T_w has not finite lateral derivatives at $x \in D$ provided that $w \notin c_0$.

Theorem (Ferrera, Gómez Gil and Llorente, 2019)

Let $w \notin c_0$. Assume that the decomposition satisfies that $D_{n+1} \cap I \neq \emptyset$ for every $I \in \mathcal{F}_n$, and that either $\rho > \frac{1}{2}$ or $\alpha_{n+1} \leq \rho \alpha_n$ for every n. If $x \in D$, then T_w has not finite lateral derivatives at x.

13 / 17

¹J. Ferrera, J. Gómez-Gil and J. Llorente, A characterization of the nowhere differentiable functions of the Generalized Takagi Class, Preprint 2019, arXiv:1909.05545v1

Non derivability on D

Example

Let $w \notin c_0$ be defined as:

- $w_0 = 0$, $w_1 = 1$, $w_2 = -1$, $w_3 = -2^{-1}$.
- $w_{3k-2} = 1$, $w_{3k-1} = -1$ and $w_{3k} = 2^{-k}$ for every k > 1.

Let us consider a decomposition satisfying

- $D_{3k-2} = D_{3k-1}$, and
- $D_{3k} = D_{3(k+1)-2} = D_{3k-1} \cup D_{3k-1}$ for every $k \ge 1$.

We have that $T'_{w}(x) = 0$ for every $x \in D_1$.

Theorem (Ferrera, Gómez Gil and Llorente, 2019)

Assume that $\alpha_{n+1} \leq \frac{\rho \alpha_n}{2}$ for every n. If $w \notin c_0$ and $x \in D$, then T_w is not derivable at x.

¹J. Ferrera, J. Gómez-Gil and J. Llorente, A characterization of the nowhere differentiable functions of the Generalized Takagi Class, Preprint 2019, arXiv:1909.05545v1 4 D > 4 B > 4 E > 4 E > 9 Q P

Nowhere derivability

Example

Let us consider the sets $D_0^+ = \{1\}$ and $D_1^+ = \{\frac{2}{3}, 1\}$. For every integer n > 1 we define the sets

$$D_{2n}^+ = \left\{ \frac{k}{2^n} \in (0,1] : k \in \mathbb{Z} \right\} \cup D_{2n-1}^+$$

and

$$D_{2n+1}^+ = \left\{ \frac{k}{2^n} - \frac{1}{3^{n+1}} \in (0,1] : k \in \mathbb{Z} \right\} \cup D_{2n}^+.$$

For all $n \geq 0$ we also define $D_n^- = \{-x : x \in D_n^+\}$ and we consider the set $D_n = D_n^+ \cup D_n^-$. Let $w \notin c_0$ be defined as $w_{2n} = 1$ and $w_{2n+1} = -1$ for every n. Then, $T_w : [-1,1] \to \mathbb{R}$ is derivable at 0 and $T_w'(0) = 0$.

Nowhere derivability

Theorem (Ferrera, Gómez Gil and Llorente, 2019)

Assume that $w \notin c_0$. If the decomposition satisfies for every n that either

- $② I \cap D_{n+1} \neq \emptyset \text{ for every } I \in \mathcal{F}_n \text{ and } \widetilde{D}_n \subset \widetilde{D}_{n+1},$

then T_w is nowhere derivable.

Theorem (Ferrera, Gómez Gil and Llorente, 2019)

If $w \notin c_0$ and $w_k \ge 0$ for every k, then

- $\partial T_w(x) = \mathbb{R}$ provided that $x \in D$.
- $\partial T_w(x) = \emptyset$ provided that $x \notin D$.

¹J. Ferrera, J. Gómez-Gil and J. Llorente, A characterization of the nowhere differentiable functions of the Generalized Takagi Class, Preprint 2019, arXiv:1909.05545v1

²P. Góra and R. J. Stern, Subdifferential analysis of the Van der Waerden function, J. Convex Anal. 18 (3) (2011) 669–705.

Acknowledgments

THANK YOU ALL!!!