Orthogonally additive polynomials on non-commutative L^p -spaces

María Luisa C. Godoy

V Congreso de Jóvenes Investigadores de la RSME Castellón

January 29, 2020

Contents

Introduction

History of the problem

Non-commutative L^p -spaces

Main result

Introduction

Definition

Let X and Y be linear spaces. A map $P\colon X\to Y$ is said to be an m-homogeneous polynomial if there exists an m-linear map $\varphi:X^m\to Y$ such that

$$P(x) = \varphi(x, \dots, x) \quad (x \in X).$$

Example

Let X be a linear space that has an additional structure that allow us to multiply its elements (algebra, function space, etc). If $X_{(m)}$ is a linear space containing the set $\{x^m: x \in X\}$ and $\Phi: X_{(m)} \to Y$ is a linear map, then we can define an m-homogeneous polynomial $P: X \to Y$ as follows:

$$P(x) = \Phi(x^m) \quad (x \in X).$$

Question

If P is a polynomial on X, then $P(x) = \Phi(x^m)$ $(x \in X)$ for some linear map Φ ?

Question

If P is a polynomial on X, then $P(x) = \Phi(x^m)$ $(x \in X)$ for some linear map Φ ?

Answer: no.

Example

If $P(x) = \Phi(x^m)$ $(x \in X)$, then P verifies that

$$x, y \in X, \ xy = yx = 0 \implies P(x + y) = P(x) + P(y).$$

Let $P: \mathbb{M}_2 \to \mathbb{C}$, $P(A) = a_{11}a_{22}$ $(A = (a_{ij}) \in \mathbb{M}_2)$.

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, B = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \implies P(A+B) \neq P(A) + P(B)$$

Let X and Y be linear spaces.

- ▶ We say that $x, y \in X$ are orthogonal if xy = yx = 0. In that case, we write $x \perp y$.
- ▶ A map $P: X \to Y$ is said to be orthogonally additive on a subset $S \subset X$ if

$$x, y \in S, x \perp y \implies P(x + y) = P(x) + P(y).$$

A map P: X → Y is said to be orthogonally additive if it is orthogonally additive on X.

Question

If P is a polynomial on X, and P is orthogonally additive on a certain subset $S \subset X$, then $P(x) = \Phi(x^m)$ $(x \in X)$ for some linear map Φ ?

Example

Let $P: C^1[0,1] \to \mathbb{C}$, $P(f) = f'(0)^2$ $(f \in C^1[0,1])$. If fg = 0, then f'(0)g'(0) = 0, so P is orthogonally additive:

$$P(f+g) = f'(0)^2 + g'(0)^2 + 2f'(0)g'(0) = P(f) + P(g).$$

If $P(f) = \Phi(f^2)$ $(f \in C^1[0,1])$, then

$$P(f) = f'(0)^2 = (f+1)'(0)^2 = P(f+1) = \Phi(f^2 + 2f + 1)$$

= $P(f) + 2\Phi(f) + P(1) \implies \Phi(f) = 0 \ (f \in C^1[0,1]).$

Orthogonal additivity is not enough for polynomials on $C^1[0,1]$.

History of the problem

Theorem (Sundaresan (1991))

Let $1 \leq p < \infty$ and let $P: L^p[0,1] \to \mathbb{R}$ be an orthogonally additive continuous m-homogeneous polynomial. Then there exists a unique continuous linear map $\Phi: L^{p/m}[0,1] \to \mathbb{R}$ such that

$$P(f) = \Phi(f^m) \quad (f \in L^p[0,1]).$$

Theorem (Sundaresan (1991))

Let $1 \leq p < \infty$ and let $P: \ell^p \to \mathbb{R}$ be an orthogonally additive continuous m-homogeneous polynomial. Then there exists a unique continuous linear map $\Phi: \ell^{p/m} \to \mathbb{R}$ such that

$$P((x_n)_n) = \Phi((x_n^m)_n) \quad ((x_n)_n \in \ell^p).$$

Theorem (Pérez García, Villanueva (2005), Carando, Lasalle, Zalduendo (2006))

Let K be a compact topological space and Y be a Banach space. Let $P: C(K) \to Y$ be an orthogonally additive continuous m-homogeneous polynomial. Then there exists a continuous linear $map \ \Phi: C(K) \to Y$ such that

$$P(f) = \Phi(f^m) \quad (f \in C(K)).$$

Theorem (Palazuelos, Peralta, Villanueva (2008))

Let A be a C^* -algebra and X be a Banach space. Let $P: A \to X$ be a continuous m-homogeneous polynomial. Then, the following are equivalent:

- 1. P is orthogonally additive;
- 2. P is orthogonally additive on A_{sa} ;
- 3. there exists a continuous linear map $\Phi: A \to X$ such that $P(x) = \Phi(x^m)$ $(x \in A)$.

Theorem (Villena (2017))

Let X be a Banach space and $n \in \mathbb{N}$. Let $P: C^n([0,1]) \to X$ be a continuous m-homogeneous polynomial. If P is orthogonally additive, then for each $(n_1,\ldots,n_m) \in \mathbb{Z}^m$ with $0 \le n_1 \le \cdots \le n_m \le n$ there exists a continuous linear map $T_{(n_1,\ldots,n_m)}: C^{n-n_m}([0,1]) \to X$ such that

$$P(f) = \sum_{0 < n_1 < \dots < n_m < n} T_{(n_1, \dots, n_m)} (f^{(n_1)} \cdots f^{(n_m)})$$

for each $f \in C^n([0,1])$.

Notation

Let X be a Banach space.

- $ightharpoonup \mathcal{F}(X) = \text{finite-rank operators on } X.$
- $ightharpoonup \mathcal{A}(X) = \overline{\mathcal{F}(X)}$, approximable operators on X.

Theorem (Alaminos, Godoy, Villena (2019))

Let X and Y be Banach spaces and suppose that X^* has the BAP. Let $P: \mathcal{A}(X) \to Y$ be a continuous m-homogeneous polynomial. Then, the following are equivalent:

- 1. P is orthogonally additive;
- 2. P is orthogonally additive on $\mathcal{F}(X)$;
- 3. there exists a continuous linear map $\Phi : \mathcal{A}(X) \to Y$ such that $P(T) = \Phi(T^m) \ (T \in \mathcal{A}(X))$.

Non-commutative L^p -spaces

Definition

Let \mathcal{M} be a von Neumann algebra. A *trace* on \mathcal{M} is a map $\tau: \mathcal{M}_+ \to [0, \infty]$ satisfying:

- $\tau(x+y) = \tau(x) + \tau(y) \text{ for all } x, y \in \mathcal{M}_+.$
- $ightharpoonup au(\lambda x) = \lambda au(x)$ for all $x \in \mathcal{M}_+$ and $\lambda \geq 0$.
- $\tau(xx^*) = \tau(x^*x) \text{ for all } x \in \mathcal{M}.$
- 1. τ is normal is $\sup_{\alpha} \tau(x_{\alpha}) = \tau(\sup_{\alpha} x_{\alpha})$ for any bounded increasing net (x_{α}) in \mathcal{M}_{+} .
- 2. τ is *semifinite* if for any non-zero $x \in \mathcal{M}_+$ there is a non-zero $y \in \mathcal{M}_+$ such that $y \le x$ and $\tau(y) < \infty$.
- 3. τ is faithful if $\tau(x) = 0$ implies x = 0.

 ${\cal M}$ is said to be *semifinite* if it admits a normal semifinite faithful trace.

- Let \mathcal{M} be a semifinite von Neumann algebra with normal semifinite faithful trace τ .
- Let $S_+(\mathcal{M}, \tau) = \{x \in \mathcal{M}_+ : \tau(\operatorname{supp}(x)) < \infty\}$ and $S(\mathcal{M}, \tau) = \operatorname{lin} S_+(\mathcal{M}, \tau)$.
- ▶ If 0 we define

$$||x||_p = (\tau(|x|^p))^{1/p}, \quad (x \in S).$$

- $\|\cdot\|_p$ is a norm if $p \ge 1$ and it is a p-norm if p < 1.
- ▶ $L^p(\mathcal{M}, \tau)$ is the completion of $(S(\mathcal{M}, \tau), \|\cdot\|_p)$.
- ▶ We set $L^{\infty}(\mathcal{M}, \tau) = (\mathcal{M}, \|\cdot\|)$ and $L^{0}(\mathcal{M}, \tau) =$ measurable closed densely defined operators affiliated to \mathcal{M} .
- ► $L^p(\mathcal{M}, \tau) = \{x \in L^0(\mathcal{M}, \tau) : (\tau(|x|^p))^{1/p} < \infty\}.$

Properties

- ▶ $L^p(\mathcal{M}, \tau)$ is a Banach space if $1 \le p \le \infty$.
- ▶ $L^p(\mathcal{M}, \tau)$ is a quasi-Banach space if 0 .
- ▶ Hölder's inequality: if $0 < p, q, r \le \infty$ are such that $\frac{1}{p} + \frac{1}{q} = \frac{1}{r}$, then

$$x \in L^p(\mathcal{M}, \tau), \ y \in L^q(\mathcal{M}, \tau) \implies xy \in L^r(\mathcal{M}, \tau)$$

and $||xy||_r \le ||x||_p ||y||_q$.

Definition

We say that $x, y \in L^0(\mathcal{M}, \tau)$ are mutually orthogonal if $xy^* = y^*x = 0$. We write $x \perp y$.

Let X be a linear space. A map $P: L^p(\mathcal{M}, \tau) \to X$ is said to be orthogonally additive on a subset S of $L^p(\mathcal{M}, \tau)$ if

$$x, y \in S$$
, $x \perp y \implies P(x + y) = P(x) + P(y)$.

Example

Let H be a Hilbert space and let Tr be the usual trace on the von Neumann algebra $\mathcal{B}(H)$. Then $L^p(\mathcal{B}(H), Tr)$ is the Schatten class $S^p(H)$.

Properties:

- $ightharpoonup \mathcal{F}(H) \subset \mathcal{S}^p(H) \subset \mathcal{K}(H).$
- ▶ If $0 , we have <math>S^p(H) \subset S^q(H)$ and $||x|| \le ||x||_q \le ||x||_p$ $(x \in S^p(H))$.
- $ightharpoonup S(\mathcal{B}(H), Tr) = \mathcal{F}(H).$

Main result

Theorem

Let \mathcal{M} be a von Neumann algebra with a normal semifinite faithful trace τ , let X be a topological linear space, and let $P \colon L^p(\mathcal{M},\tau) \to X$ be a continuous m-homogeneous polynomial with 0 . Then the following conditions are equivalent:

- 1. there exists a continuous linear map $\Phi \colon L^{p/m}(\mathcal{M}, \tau) \to X$ such that $P(x) = \Phi(x^m)$ $(x \in L^p(\mathcal{M}, \tau))$;
- 2. P is orthogonally additive on $L^p(\mathcal{M}, \tau)_{sa}$;
- 3. P is orthogonally additive on $S(\mathcal{M}, \tau)_+$.

If the conditions are satisfied, then the map Φ is unique.

Proposition

Let H be a Hilbert space with $\dim H \ge 2$, let X be a topological linear space, and let $P \colon S^p(H) \to X$ be a continuous m-homogeneous polynomial. Suppose that P is orthogonally additive on $S^p(H)$. Then P=0.

Proof (sketch):

- $\triangleright P|_{\mathcal{F}(H)_{sa}}=0 \implies P|_{\mathcal{F}(H)}=0 \implies P=0.$
- ► For each $\xi, \eta \in H$, let $\xi \otimes \eta \in \mathcal{F}(H)$ defined by $(\xi \otimes \eta)(\psi) = \langle \psi | \eta \rangle \xi \ (\psi \in H)$.
- ▶ If $x \in \mathcal{F}(H)_{sa}$, then $x = \sum_{j=1}^{k} \alpha_j \xi_j \otimes \xi_j$, where $k \geq 2$, $\alpha_1, \ldots, \alpha_k \in \mathbb{R}$, and $\{\xi_1, \ldots, \xi_k\} \subset H$ is orthonormal.
- ▶ If $\mathcal{M} = \text{alg} \{ \xi_i \otimes \xi_j : i, j \in \{1, ..., k\} \} \subset \mathcal{F}(\mathcal{H})$, then \mathcal{M} is *-isomorphic to the von Neumann algebra $\mathcal{B}(K)$, where $K = \text{lin}\{\xi_1, ..., \xi_k\}$.
- $P \mid_{\mathcal{M}} = 0 \implies P(x) = 0.$

Lemma

Let \mathcal{M} be a von Neumann algebra, let X be a topological linear space, and let $P \colon \mathcal{M} \to X$ be a continuous m-homogeneous polynomial. Then the following conditions are equivalent:

- 1. there exists a continuous linear map $\Phi \colon \mathcal{M} \to X$ such that $P(x) = \Phi(x^m) \ (x \in \mathcal{M});$
- 2. P is orthogonally additive on \mathcal{M}_{sa} ;
- 3. P is orthogonally additive on \mathcal{M}_+ .

If the conditions are satisfied, then the map Φ is unique.

Proof (sketch):

Let $\varphi: \mathcal{M}^m \to X$ be the symmetric *m*-linear map associated with P and define $\Phi: \mathcal{M} \to X$ by

$$\Phi(x) = \varphi(x, 1, \dots, 1) \quad (x \in \mathcal{M}).$$

- ▶ Let $Q: \mathcal{M} \to X$ be defined by $Q(x) = \Phi(x^m)$ $(x \in \mathcal{M})$.
- ▶ If $P \mid_{\mathcal{M}_{sa}} = Q \mid_{\mathcal{M}_{sa}}$, then P = Q.
- Let $\{e_1, \ldots, e_k\} \in \mathcal{M}$ be mutually orthogonal projections, let $\{\rho_1, \ldots, \rho_k\} \subset \mathbb{R}$ and let $x = \sum_{j=1}^k \rho_j e_j$.
- $P(x) = \sum_{i=1}^k \rho_i^m \varphi(e_i, \dots, e_i) = Q(x).$
- ▶ If $x \in \mathcal{M}_{sa}$ there exists $(x_n) \subset \mathcal{M}_{sa}$ such that $\lim x_n = x$ and x_n has finite spectrum.
- $P(x) = \lim P(x_n) = \lim Q(x_n) = Q(x).$

Proof of the theorem (sketch):

- ▶ Let $e \in \text{Proj}(M)$ with $\tau(e) < \infty$ and let $\mathcal{M}_e = e\mathcal{M}e$.
- $ightharpoonup \mathcal{M}_e \subset \mathcal{S}(\mathcal{M}, \tau).$
- $\triangleright P \mid_{\mathcal{M}_e}$ is continuous.
- There exists a unique continuous linear map $\Phi_e : \mathcal{M}_e \to X$ such that $P(x) = \Phi_e(x^m)$ $(x \in \mathcal{M}_e)$.
- For each $x \in S(\mathcal{M}, \tau)$, define $\Phi(x) = \Phi_e(x)$, where $e \in \text{Proj}(\mathcal{M})$ is such that $\tau(e) < \infty$ and $x \in \mathcal{M}_e$.
- Φ is linear.
- lacktriangle Φ is continuous with respect to the norm $\|\cdot\|_{p/m}$.
- ▶ Φ extends to a continuous linear map from $L^{p/m}(\mathcal{M}, \tau)$ to the completion of X.
- $\blacktriangleright \Phi(L^{p/m}(\mathcal{M},\tau)) \subset X.$

Proposition

Let \mathcal{M} be a von Neumann algebra with a normal semifinite faithful trace τ and with no minimal projections, let X be a Banach space, and let $\Phi \colon L^p(\mathcal{M},\tau) \to X$ be a continuous linear map with $0 . Then <math>\Phi = 0$.

Proof (sketch):

- For each projection $e \in \mathcal{M}$ with $\tau(e) < \infty$ and each $0 \le \rho \le \tau(e)$, there exists a projection $e_0 \in \mathcal{M}$ such that $e_0 \le e$ and $\tau(e_0) = \rho$.
- ▶ Let $e_0 \in \text{Proj}(M)$ with $\tau(e_0) < \infty$.
- There is a decreasing sequence of projections (e_n) such that $\tau(e_n) = 2^{-n}\tau(e_0)$ and $\|\Phi(e_0)\| \le 2^n\|\Phi(e_n)\|$ $(n \in \mathbb{N})$.
- ► Take $x \in S(\mathcal{M}, \tau)_+$, and let e = supp(x). There exists $(x_n) \subset \mathcal{M}_e$ such that $\lim x_n = x$ and $\Phi(x_n) = 0$.

Proposition

Let $\mathcal M$ be a von Neumann algebra with a normal semifinite faithful trace τ and with no minimal projections, let X be a Banach space, and let $P\colon L^p(\mathcal M,\tau)\to X$ be a continuous m-homogeneous polynomial with 0< p/m<1. Suppose that P is orthogonally additive on $S(\mathcal M,\tau)_+$. Then P=0.

Example

Suppose that
$$0 < p/m < 1$$
. Let $\Phi : L^{p/m}(\mathcal{M}, \tau) \to L^{p/m}(\mathcal{M}, \tau)$, $\Phi(x) = x, \ (x \in L^{p/m}(\mathcal{M}, \tau))$.

The polynomial $P: L^p(\mathcal{M}, \tau) \to L^{p/m}(\mathcal{M}, \tau)$,

$$P(x) = \Phi(x^m) = x^m \quad (x \in L^p(\mathcal{M}, \tau))$$

is orthogonally additive on $S(\mathcal{M}, \tau)_+$.

Corollary

Let $\mathcal M$ be a von Neumann algebra with a normal semifinite faithful trace τ , and let $P\colon L^p(\mathcal M,\tau)\to\mathbb C$ be a continuous m-homogeneous polynomial with $m\le p<\infty$. Then the following conditions are equivalent:

- 1. there exists $\zeta \in L^r(\mathcal{M}, \tau)$ such that $P(x) = \tau(\zeta x^m)$ $(x \in L^p(\mathcal{M}, \tau))$, where r = p/(p-m) (with the convention that $p/0 = \infty$);
- 2. P is orthogonally additive on $L^p(\mathcal{M}, \tau)_{sa}$;
- 3. P is orthogonally additive on $S(\mathcal{M}, \tau)_+$.

If the conditions are satisfied, then ζ is unique and $\|P\| \leq \|\zeta\|_r \leq 2\|P\|$; moreover, if P is hermitian, then ζ is self-adjoint and $\|\zeta\|_r = \|P\|$.

References

Jerónimo Alaminos, María L. C. Godoy, and Armando Villena. Orthogonally additive polynomials on non-commutative L^p -spaces.

Revista Matemática Complutense, Nov 2019. DOI:10.1007/s13163-019-00330-1.