WEIERSTRASS M TEST: ALGEBRAIC GENERICITY

Pablo José Gerlach Mena

Joint work with M.C. Calderón-Moreno and J.A. Prado-Bassas

27th January 2020

INDEX

Previous Concepts

2 Constructing counterexamples

Main Results

M-Weierstrass' Theorem

Let $(f_n)_n \subset \mathcal{C}([0,1])$ be a sequence of functions. We define the series of functions as

$$\sum_{n=1}^{\infty} f_n(x), \quad \forall x \in [0,1].$$

M-Weierstrass' Theorem

Let $(f_n)_n \subset \mathcal{C}([0,1])$ be a sequence of functions. We define the series of functions as

$$\sum_{n=1}^{\infty} f_n(x), \quad \forall x \in [0,1].$$

If there exists $(c_n)_n \subset \mathbb{R}$ such that $|f_n(x)| \leq c_n$ for all $x \in [0, 1]$, $n \in \mathbb{N}$ and $\sum_{n=1}^{\infty} c_n < +\infty$, then the series is uniformly convergent on [0, 1].

Consider the series $\sum_{n=1}^{\infty} f_n(x)$ where $f_n \in \mathcal{C}([0,1])$ is given by

$$f_n(x) = \begin{cases} \frac{1}{n} \sin^2 \left(2^{n+1} \pi x \right) & \text{if } x \in \left(\frac{1}{2^{n+1}}, \frac{1}{2^n} \right) \\ 0 & \text{otherwise.} \end{cases}$$

Consider the series $\sum_{n=1}^{\infty} f_n(x)$ where $f_n \in \mathcal{C}([0,1])$ is given by

$$f_n(x) = \begin{cases} \frac{1}{n} \sin^2 \left(2^{n+1} \pi x \right) & \text{if } x \in \left(\frac{1}{2^{n+1}}, \frac{1}{2^n} \right) \\ 0 & \text{otherwise.} \end{cases}$$

We have that

Consider the series $\sum_{n=1}^{\infty} f_n(x)$ where $f_n \in \mathcal{C}([0,1])$ is given by

$$f_n(x) = \begin{cases} \frac{1}{n} \sin^2 \left(2^{n+1} \pi x \right) & \text{if } x \in \left(\frac{1}{2^{n+1}}, \frac{1}{2^n} \right) \\ 0 & \text{otherwise.} \end{cases}$$

We have that

The series is absolutely convergent.

Consider the series $\sum_{n=1}^{\infty} f_n(x)$ where $f_n \in \mathcal{C}([0,1])$ is given by

$$f_n(x) = \begin{cases} \frac{1}{n} \sin^2 \left(2^{n+1} \pi x \right) & \text{if } x \in \left(\frac{1}{2^{n+1}}, \frac{1}{2^n} \right) \\ 0 & \text{otherwise.} \end{cases}$$

We have that

- The series is absolutely convergent.
- The series is uniformly convergent on [0, 1].

Consider the series $\sum_{n=1}^{\infty} f_n(x)$ where $f_n \in \mathcal{C}([0,1])$ is given by

$$f_n(x) = \begin{cases} \frac{1}{n} \sin^2 \left(2^{n+1} \pi x \right) & \text{if } x \in \left(\frac{1}{2^{n+1}}, \frac{1}{2^n} \right) \\ 0 & \text{otherwise.} \end{cases}$$

We have that

- The series is absolutely convergent.
- The series is uniformly convergent on [0, 1].
- The series has not a mayorant sequence.

(A1) The series
$$\sum_{n=1}^{\infty} f_n(x)$$
 converges absolutely on *I*.

- (A1) The series $\sum_{n=1}^{\infty} f_n(x)$ converges absolutely on *I*.
- (A2) The series $\sum_{n=1}^{\infty} f_n(x)$ converges uniformly on *I*.

- (A1) The series $\sum_{n=1}^{\infty} f_n(x)$ converges absolutely on *I*.
- (A2) The series $\sum_{n=1}^{\infty} f_n(x)$ converges uniformly on *I*.
- (A3) The series $\sum_{n=1}^{\infty} f_n(x)$ does not possess a mayorant, that is

$$\sum_{n=1}^{\infty} \|f_n\|_{\infty} = +\infty$$

Let *X* be a topological vector space (t.v.s.), $A \subset X$. We say that

• *A* is lineable if $\exists M \subset A \cup \{0\}$ v.s. of infinite dimension.

- *A* is lineable if $\exists M \subset A \cup \{0\}$ v.s. of infinite dimension.
- *A* is spaceable if $\exists M \subset A \cup \{0\}$ closed v.s. of infinite dimension.

- *A* is lineable if $\exists M \subset A \cup \{0\}$ v.s. of infinite dimension.
- *A* is spaceable if $\exists M \subset A \cup \{0\}$ closed v.s. of infinite dimension.
- A is dense-lineable if M can be chosen dense in X.

- *A* is lineable if $\exists M \subset A \cup \{0\}$ v.s. of infinite dimension.
- *A* is spaceable if $\exists M \subset A \cup \{0\}$ closed v.s. of infinite dimension.
- A is dense-lineable if M can be chosen dense in X.
- A is maximal-(dense)-lineable if dim(M) = dim(X).

Let X be a topological vector space (t.v.s.), $A \subset X$. We say that

- *A* is lineable if $\exists M \subset A \cup \{0\}$ v.s. of infinite dimension.
- *A* is spaceable if $\exists M \subset A \cup \{0\}$ closed v.s. of infinite dimension.
- A is dense-lineable if M can be chosen dense in X.
- A is maximal-(dense)-lineable if dim(M) = dim(X).

Let X be contained in some (linear) algebra A and $\mathcal{B} \subset \mathcal{A}$. We say that

Let X be a topological vector space (t.v.s.), $A \subset X$. We say that

- *A* is lineable if $\exists M \subset A \cup \{0\}$ v.s. of infinite dimension.
- *A* is spaceable if $\exists M \subset A \cup \{0\}$ closed v.s. of infinite dimension.
- A is dense-lineable if M can be chosen dense in X.
- A is maximal-(dense)-lineable if dim(M) = dim(X).

Let X be contained in some (linear) algebra A and $\mathcal{B} \subset \mathcal{A}$. We say that

• \mathcal{B} is algebrable if $\exists \mathcal{C} \subset \mathcal{A}$ so that $\mathcal{C} \subset \mathcal{B} \cup \{0\}$ and the cardinality of any system of generators of \mathcal{C} is infinite.

Let X be a topological vector space (t.v.s.), $A \subset X$. We say that

- *A* is lineable if $\exists M \subset A \cup \{0\}$ v.s. of infinite dimension.
- *A* is spaceable if $\exists M \subset A \cup \{0\}$ closed v.s. of infinite dimension.
- A is dense-lineable if M can be chosen dense in X.
- A is maximal-(dense)-lineable if dim(M) = dim(X).

Let X be contained in some (linear) algebra A and $\mathcal{B} \subset \mathcal{A}$. We say that

- \mathcal{B} is algebrable if $\exists \mathcal{C} \subset \mathcal{A}$ so that $\mathcal{C} \subset \mathcal{B} \cup \{0\}$ and the cardinality of any system of generators of \mathcal{C} is infinite.
- If in addition, \mathcal{A} is a commutative algebra, we say that \mathcal{B} is strongly algebrable if $\mathcal{B} \cup \{0\}$ contains generated algebra which is isomorphic to a free algebra.

Previous concepts

DEFINITION

Consider now the family $\mathcal{F} \subset C(I)^{\mathbb{N}}$ of all sequences of functions $u = (u_n)_n$ such that

DEFINITION

Consider now the family $\mathcal{F} \subset C(I)^{\mathbb{N}}$ of all sequences of functions $u = (u_n)_n$ such that

• the interior of the supports of the u_n 's are pairwise disjoint, that is

$$int(supp(u_n)) \cap int(supp(u_m)) = \varnothing, \quad \forall n \neq m,$$
 (F1)

DEFINITION

Consider now the family $\mathcal{F} \subset C(I)^{\mathbb{N}}$ of all sequences of functions $u = (u_n)_n$ such that

• the interior of the supports of the u_n 's are pairwise disjoint, that is

$$int(supp(u_n)) \cap int(supp(u_m)) = \varnothing, \quad \forall n \neq m,$$
 (F1)

• the sequence $u = (u_n)_n$ is uniformly bounded, that is

$$\exists M > 0 \text{ such that } \|u_n\|_{\infty} \leq M, \quad \forall n \in \mathbb{N},$$
 (F2)

DEFINITION

Consider now the family $\mathcal{F} \subset C(I)^{\mathbb{N}}$ of all sequences of functions $u = (u_n)_n$ such that

• the interior of the supports of the u_n 's are pairwise disjoint, that is

$$int(supp(u_n)) \cap int(supp(u_m)) = \varnothing, \quad \forall n \neq m,$$
 (F1)

• the sequence $u = (u_n)_n$ is uniformly bounded, that is

$$\exists M > 0 \text{ such that } \|u_n\|_{\infty} \le M, \quad \forall n \in \mathbb{N}, \tag{F2}$$

there exists

$$\liminf_{n\to\infty} \|u_n\|_{\infty} =: L > 0.$$
(F3)

Lemma

Let
$$u = (u_n)_n \in \mathcal{F}$$
 and let $a = (a_n)_n \subset \mathbb{R}$. Then:

LEMMA

Let
$$u = (u_n)_n \in \mathcal{F}$$
 and let $a = (a_n)_n \subset \mathbb{R}$. Then:

1. The series $\sum_{n=1}^{\infty} a_n u_n(x)$ converges absolutely on I.

LEMMA

Let $u = (u_n)_n \in \mathcal{F}$ and let $a = (a_n)_n \subset \mathbb{R}$. Then:

- 1. The series $\sum_{n=1}^{\infty} a_n u_n(x)$ converges absolutely on I.
- 2. The series $\sum_{n=1}^{\infty} a_n u_n(x)$ converges uniformly on I if and only if $a \in c_0$.

LEMMA

Let $u = (u_n)_n \in \mathcal{F}$ and let $a = (a_n)_n \subset \mathbb{R}$. Then:

- 1. The series $\sum_{n=1}^{\infty} a_n u_n(x)$ converges absolutely on I.
- 2. The series $\sum_{n=1}^{\infty} a_n u_n(x)$ converges uniformly on I if and only if $a \in c_0$.
- 3. The series $\sum_{n=1}^{\infty} \|a_n u_n\|_{\infty} < +\infty$ if and only if $a \in I_1$.

EXAMPLES

EXAMPLE

Let $I = [a, b] \subset \mathbb{R}$ and consider the sequence $u = (u_n)_n \in C(I)^{\mathbb{N}}$ given by

$$u_n(x) = \begin{cases} \sin\left(2^n\pi\left(\frac{x-a}{b-a}\right) - \pi\right) & \text{if } x \in I_n, \\ 0 & \text{otherwise.} \end{cases}$$

where
$$I_n = \left[\frac{(2^n - 1)a + b}{2^n}, \frac{(2^{n-1} - 1)a + b}{2^{n-1}}\right].$$

EXAMPLES

EXAMPLE

Let $I = [a, b] \subset \mathbb{R}$ and consider the sequence $u = (u_n)_n \in C(I)^{\mathbb{N}}$ given by

$$u_n(x) = \left\{ egin{array}{ll} \sin\left(2^n\pi\left(rac{x-a}{b-a}
ight) - \pi
ight) & \textit{if } x \in I_n, \ & 0 & \textit{otherwise}. \end{array}
ight.$$

where
$$I_n = \left[\frac{(2^n-1)a+b}{2^n}, \frac{(2^{n-1}-1)a+b}{2^{n-1}}\right].$$
 If $a = (a_n)_n \in c_0 \backslash I_1$ then

$$f = (a_n u_n)_n \in \mathcal{A}$$
.

EXAMPLE

• Let $f: I \longrightarrow \mathbb{R}$ be a continuous functions.

EXAMPLE

- Let $f: I \longrightarrow \mathbb{R}$ be a continuous functions.
- Divide the interval I = [a, b] as $I = \bigcup_{n \in \mathbb{N}} I_n$ where the I_n 's are defined as

$$I_n = \left[\frac{(2^n-1)a+b}{2^n}, \frac{(2^{n-1}-1)a+b}{2^{n-1}}\right].$$

EXAMPLE

- Let $f: I \longrightarrow \mathbb{R}$ be a continuous functions.
- Divide the interval I = [a, b] as $I = \bigcup_{n \in \mathbb{N}} I_n$ where the I_n 's are defined as

$$I_n = \left[\frac{(2^n-1)a+b}{2^n}, \frac{(2^{n-1}-1)a+b}{2^{n-1}}\right].$$

Define

$$u_n(x) := f\left(2^n\left(\frac{x-a}{b-a}\right)-1\right), \quad \forall x \in I_{3n-1}.$$

EXAMPLE

- Let $f: I \longrightarrow \mathbb{R}$ be a continuous functions.
- Divide the interval I = [a, b] as $I = \bigcup_{n \in \mathbb{N}} I_n$ where the I_n 's are defined as

$$I_n = \left[\frac{(2^n-1)a+b}{2^n}, \frac{(2^{n-1}-1)a+b}{2^{n-1}}\right].$$

Define

$$u_n(x) := f\left(2^n\left(\frac{x-a}{b-a}\right)-1\right), \quad \forall x \in I_{3n-1}.$$

• Choosing any $a = (a_n)_n \in c_0 \setminus I_1$, we obtain that

$$f = (a_n u_n)_n \in \mathcal{A}$$
.

ALGEBRABILITY

THEOREM

The family \mathcal{A} of anti-M Weierstrass sequences is strongly \mathfrak{c} -algebrable.

THEOREM

The family A of anti-M Weierstrass sequences is strongly \mathfrak{c} -algebrable.

SKETCH OF THE PROOF

Theorem

The family A of anti-M Weierstrass sequences is strongly \mathfrak{c} -algebrable.

SKETCH OF THE PROOF

 Let H ⊂ (0, +∞) be a ℚ-linearly independent set, card(H) = c. Consider

$$f_{n,c}(x) := a_{n,c}u_n(x),$$

where $a_{n,c}$ is chosen as $a_{n,c} = \frac{1}{\log^c(n)}$.

Theorem

The family A of anti-M Weierstrass sequences is strongly \mathfrak{c} -algebrable.

SKETCH OF THE PROOF

 Let H ⊂ (0, +∞) be a ℚ-linearly independent set, card(H) = c. Consider

$$f_{n,c}(x) := a_{n,c}u_n(x),$$

where $a_{n,c}$ is chosen as $a_{n,c} = \frac{1}{\log^c(n)}$.

• Let \mathcal{B} be the algebra generated by $\{(f_{n,c})_n : c \in H\}$.

THEOREM (Bartoszewicz, Glab)

The set $c_0 \setminus \bigcup_{p>1} l_p$ is densely strongly \mathfrak{c} -algebrable in c_0 .

THEOREM (Bartoszewicz, Glab)

The set $c_0 \setminus \bigcup_{p>1} l_p$ is densely strongly \mathfrak{c} -algebrable in c_0 .

THEOREM

Let $\mathfrak A$ be a free algebra as above and $u=(u_n)_n\in\mathcal F$.

THEOREM (Bartoszewicz, Glab)

The set $c_0 \setminus \bigcup_{p>1} l_p$ is densely strongly \mathfrak{c} -algebrable in c_0 .

THEOREM

Let $\mathfrak A$ be a free algebra as above and $u=(u_n)_n\in \mathcal F.$ Then, the algebra generated by the set

$$\{(a_nu_n(x))_n: a=(a_n)_n\in\mathfrak{A}\}$$

is free in the family of anti-M sequences of functions A

LINEABILITY

THEOREM

The family A of anti-M Weierstrass sequences is strongly \mathfrak{c} -algebrable.

LINEABILITY

THEOREM

The family A of anti-M Weierstrass sequences is strongly \mathfrak{c} -algebrable.

COROLLARY

The family A of anti-M Weierstrass sequences is maximal lineable.

LEMMA (Aron, García, Pérez, Seoane)

Let X be a separable metrizable topological vector space, $A \subset X$ maximal lineable and $B \subset X$ dense-lineable in X with $A \cap B = \emptyset$. If A is stronger than B then A is maximal dense-lineable.

LEMMA (Aron, García, Pérez, Seoane)

Let X be a separable metrizable topological vector space, $A \subset X$ maximal lineable and $B \subset X$ dense-lineable in X with $A \cap B = \emptyset$. If A is stronger than B then A is maximal dense-lineable.

LEMMA

The family A of anti-M Weierstrass sequences is maximal dense-lineable in $c_0(C(I))$.

LEMMA (Aron, García, Pérez, Seoane)

Let X be a separable metrizable topological vector space, $A \subset X$ maximal lineable and $B \subset X$ dense-lineable in X with $A \cap B = \emptyset$. If A is stronger than B then A is maximal dense-lineable.

LEMMA

The family A of anti-M Weierstrass sequences is maximal dense-lineable in $c_0(C(I))$.

SKETCH OF THE PROOF

Lemma (Aron, García, Pérez, Seoane)

Let X be a separable metrizable topological vector space, $A \subset X$ maximal lineable and $B \subset X$ dense-lineable in X with $A \cap B = \emptyset$. If A is stronger than B then A is maximal dense-lineable.

LEMMA

The family A of anti-M Weierstrass sequences is maximal dense-lineable in $c_0(C(I))$.

SKETCH OF THE PROOF

• $c_{00}(\mathcal{C}(I))$ is a dense-lineable subset of $c_0(\mathcal{C}(I))$.

LEMMA (Aron, García, Pérez, Seoane)

Let X be a separable metrizable topological vector space, $A \subset X$ maximal lineable and $B \subset X$ dense-lineable in X with $A \cap B = \emptyset$. If A is stronger than B then A is maximal dense-lineable.

LEMMA

The family A of anti-M Weierstrass sequences is maximal dense-lineable in $c_0(C(I))$.

SKETCH OF THE PROOF

- $c_{00}(\mathcal{C}(I))$ is a dense-lineable subset of $c_0(\mathcal{C}(I))$.
- $c_{00}(\mathcal{C}(I)) + \mathcal{A} \subseteq \mathcal{A}$.

Thank you very much for your attention

BIBLIOGRAPHY

R. M. Aron, L. Bernal-González, D. M. Pellegrino y J. B. Seoane-Sepúlveda, *Lineability: The search for linearity in mathematics*, Monographs and Research Notes in Mathematics. Chapman & Hall/CRC. Boca Raton. FL. 2015.

R. M. Aron, F. J. García-Pacheco , D. Pérez-García y J. B. Seoane-Sepúlveda, On dense lineability of sets of functions on $\mathbb R$, Topology **48** (2009) 149-156.

M.C. Calderón-Moreno, P.J. Gerlach-Mena, J.A. Prado-Bassas, *Anti M-Weierstrass functions* (Preprint).