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M-Weierstrass’ Theorem

Let (fn)n ⊂ C([0,1]) be a sequence of functions. We define the
series of functions as

∞∑
n=1

fn(x), ∀x ∈ [0,1].

If there exists (cn)n ⊂ R such that |fn(x)| ≤ cn for all x ∈ [0,1],

n ∈ N and
∞∑

n=1

cn < +∞, then the series is uniformly convergent

on [0,1].
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Counterexample

Consider the series
∞∑

n=1

fn(x) where fn ∈ C([0,1]) is given by

fn(x) =


1
n
sin2 (2n+1πx

)
if x ∈

(
1

2n+1 ,
1
2n

)
0 otherwise.

We have that
• The series is absolutely convergent.
• The series is uniformly convergent on [0,1].
• The series has not a mayorant sequence.
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Definition of Anti-M Weierstrass’ Sequence

The family A ⊂ c0(C(I)) of anti-M Weierstrass sequences of
functions, where an element f = (fn)n ∈ A must fulfill the following
conditions:

(A1) The series
∞∑

n=1

fn(x) converges absolutely on I.

(A2) The series
∞∑

n=1

fn(x) converges uniformly on I.

(A3) The series
∞∑

n=1

fn(x) does not possess a mayorant, that is

∞∑
n=1

‖fn‖∞ = +∞

Pablo José Gerlach Mena



Previous Concepts
Constructing counterexamples

Main Results

Definition of Anti-M Weierstrass’ Sequence

The family A ⊂ c0(C(I)) of anti-M Weierstrass sequences of
functions, where an element f = (fn)n ∈ A must fulfill the following
conditions:

(A1) The series
∞∑

n=1

fn(x) converges absolutely on I.

(A2) The series
∞∑

n=1

fn(x) converges uniformly on I.

(A3) The series
∞∑

n=1

fn(x) does not possess a mayorant, that is

∞∑
n=1

‖fn‖∞ = +∞
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Definitions

Let X be a topological vector space (t.v.s.), A ⊂ X . We say that

A is lineable if ∃M ⊂ A ∪ {0} v.s. of infinite dimension.

A is spaceable if ∃M ⊂ A ∪ {0} closed v.s. of infinite dimension.

A is dense-lineable if M can be chosen dense in X .

A is maximal-(dense)-lineable if dim(M) = dim(X ).

Let X be contained in some (linear) algebra A and B ⊂ A. We say
that

B is algebrable if ∃C ⊂ A so that C ⊂ B ∪ {0} and the cardinality
of any system of generators of C is infinite.

If in addition, A is a commutative algebra, we say that B is
strongly algebrable if B ∪ {0} contains generated algebra which
is isomorphic to a free algebra.
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Previous concepts

Definition

Consider now the family F ⊂ C(I)N of all sequences of functions
u = (un)n such that

• the interior of the supports of the un’s are pairwise disjoint, that is

int(supp(un)) ∩ int(supp(um)) = ∅, ∀n 6= m, (F1)

• the sequence u = (un)n is uniformly bounded, that is

∃M > 0 such that ‖un‖∞ ≤ M, ∀n ∈ N, (F2)

• there exists
lim inf
n→∞

‖un‖∞ =: L > 0. (F3)
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Pablo José Gerlach Mena



Previous Concepts
Constructing counterexamples

Main Results

Previous concepts

Definition

Consider now the family F ⊂ C(I)N of all sequences of functions
u = (un)n such that

• the interior of the supports of the un’s are pairwise disjoint, that is

int(supp(un)) ∩ int(supp(um)) = ∅, ∀n 6= m, (F1)

• the sequence u = (un)n is uniformly bounded, that is

∃M > 0 such that ‖un‖∞ ≤ M, ∀n ∈ N, (F2)

• there exists
lim inf
n→∞

‖un‖∞ =: L > 0. (F3)
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Previous concepts

Lemma

Let u = (un)n ∈ F and let a = (an)n ⊂ R. Then:

1. The series
∞∑

n=1

anun(x) converges absolutely on I.

2. The series
∞∑

n=1

anun(x) converges uniformly on I if and only

if a ∈ c0.

3. The series
∞∑

n=1

‖anun‖∞ < +∞ if and only if a ∈ l1.
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Examples

Example

Let I = [a,b] ⊂ R and consider the sequence u = (un)n ∈ C(I)N

given by

un(x) =


sin

(
2nπ

(
x − a
b − a

)
− π

)
if x ∈ In,

0 otherwise.

where In =

[
(2n − 1)a + b

2n ,
(2n−1 − 1)a + b

2n−1

]
.

If a = (an)n ∈ c0\l1 then

f = (anun)n ∈ A.
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Turning a continuous function into an
Anti-M sequence

Example

• Let f : I −→ R be a continuous functions.

• Divide the interval I = [a, b] as I =
⋃
n∈N

In where the In’s are defined as

In =

[
(2n − 1)a + b

2n ,
(2n−1 − 1)a + b

2n−1

]
.

• Define

un(x) := f
(

2n
(

x − a
b − a

)
− 1
)
, ∀x ∈ I3n−1.

• Choosing any a = (an)n ∈ c0\l1, we obtain that

f = (anun)n ∈ A.

Pablo José Gerlach Mena



Previous Concepts
Constructing counterexamples

Main Results

Turning a continuous function into an
Anti-M sequence

Example

• Let f : I −→ R be a continuous functions.

• Divide the interval I = [a, b] as I =
⋃
n∈N

In where the In’s are defined as

In =

[
(2n − 1)a + b

2n ,
(2n−1 − 1)a + b

2n−1

]
.

• Define

un(x) := f
(

2n
(

x − a
b − a

)
− 1
)
, ∀x ∈ I3n−1.

• Choosing any a = (an)n ∈ c0\l1, we obtain that

f = (anun)n ∈ A.
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Algebrability

Theorem

The family A of anti-M Weierstrass sequences is strongly
c-algebrable.

Sketch of the proof

• Let H ⊂ (0,+∞) be a Q-linearly independent set,
card(H) = c. Consider

fn,c(x) := an,cun(x),

where an,c is chosen as an,c =
1

logc(n)
.

• Let B be the algebra generated by {(fn,c)n : c ∈ H}.
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Algebrability

Theorem (Bartoszewicz, Glab)

The set c0\
⋃
p≥1

lp is densely strongly c-algebrable in c0.

Theorem

Let A be a free algebra as above and u = (un)n ∈ F . Then, the
algebra generated by the set

{(anun(x))n : a = (an)n ∈ A}

is free in the family of anti-M sequences of functions A
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Lineability

Theorem
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Lemma (Aron, Garćıa, Pérez, Seoane)

Let X be a separable metrizable topological vector space,
A ⊂ X maximal lineable and B ⊂ X dense-lineable in X with
A ∩ B = ∅. If A is stronger than B then A is maximal
dense-lineable.

Lemma

The family A of anti-M Weierstrass sequences is maximal
dense-lineable in c0(C(I)).

Sketch of the proof

• c00(C(I)) is a dense-lineable subset of c0(C(I)).
• c00(C(I))) +A ⊆ A.
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Thank you very much for
your attention
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Lineability: The search for linearity in mathematics, Monographs and Research
Notes in Mathematics, Chapman & Hall/CRC, Boca Raton, FL, 2015.

R. M. Aron, F. J. Garcı́a-Pacheco , D. Pérez-Garcı́a y J. B. Seoane-Sepúlveda,
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