C^1 – fine approximations without critical points

Miguel García Bravo

(Universidad Autónoma de Madrid/ICMAT)

V Congreso de Jóvenes Investigadores de la RSME, Castellón 27-January-2020

Critical point

Definition (Critical point)

If we have a function $f: E \longrightarrow F$ between Banach spaces which is (Fréchet) differentiable at some point x we will say that x is a critical point if $Df(x) \in L(E,F)$ is not a surjective operator.

- Set of critical points: C_f
- Set of critical values: $f(C_f)$

Recall that the (Fréchet) derivative Df(x) of f at x is defined as the unique linear continuous operator such that

$$\lim_{h \to 0} \frac{||f(x+h) - f(x) - Df(x)(h)||}{||h||} = 0.$$

QUESTION: Which regularity conditions do we have to impose to f so that $f(C_f)$ is *small* in some sense?

Classical Morse-Sard theorem: $\dim(E), \dim(F) < \infty$

Theorem (Morse 1939, Sard 1942)

Let $f: \mathbb{R}^n \to \mathbb{R}^d$ be a C^k function with $k \geq \max\{n-d+1,1\}$. Then the set of critical values, $f(C_f)$, is of Lebesgue measure zero in \mathbb{R}^d $(\mathcal{L}^d(f(C_f)) = 0)$.

Note that here

$$C_f = \{x \in \mathbb{R}^n : rank \, Df(x) < \min\{n, d\}\}.$$

This result has been shown to be sharp in the class of functions C^j thanks to the famous counterexample of Whitney in 1935. He built a function $f: \mathbb{R}^2 \to \mathbb{R}$ of class C^1 such that $\mathcal{L}^1(f(C_f)) > 0$.

This theorem has been generalized to other function spaces such as Hölder spaces $C^{k-1,1}$, Sobolev spaces $W^{k,p}$ with p>n or to the space of functions of bounded variation BV_n .

Infinite dimension: $\dim(E) = \infty$

The first version of the Morse-Sard Theorem in infinite dimensions:

Theorem (Smale 1965)

If E and F are separable Banach spaces and $f: E \to F$ is a C^r Fredholm mapping (that is, every differential Df(x) is a Fredholm operator between E and F) then $f(C_f)$ is meager, and in particular $f(C_f)$ has no interior points, provided that $r > \max\{index(Df(x)), 0\}$ for all $x \in E$.

However these assumptions are quite restrictive as, for instance, if E is infinite-dimensional then no linear bounded operator $T:E\to\mathbb{R}$ is Fredholm.

Kupka's counterexample (1965): there are C^{∞} functions $f: \ell_2 \to \mathbb{R}$ so that their sets of critical values $f(C_f)$ contain intervals.

Conclusion: We cannot expect to have a good version of the Morse-Sard theorem for infinite dimensions!!

Example (Bates-Moreira's counterexample, 2001)

Define $f: \ell_2 \to \mathbb{R}$,

$$f(\sum_{n=1}^{\infty} x_n e_n) = \sum_{n=1}^{\infty} (3 \cdot 2^{-\frac{n}{3}} x_n^2 - 2x_n^3),$$

which is a polynomial of degree three and whose set of critical points is $C_f=\{\sum_{n=1}^\infty x_ne_n:\,x_n\in\{0,2^{-\frac{n}{3}}\}\}$ and $f(C_f)=[0,1].$

Approximated Morse-Sard results

Given a pair of Banach spaces (E,F) we say that the property (P_k) holds if for every continuous mapping $f:E\to F$ and every continuous function $\varepsilon:E\to (0,\infty)$ there exists a C^k mapping $g:E\to F$ such that

- $\qquad \qquad \|f(x)-g(x)\| \leq \varepsilon(x) \text{ for every } x \in E \text{, and }$
- ② $Dg(x): E \to F$ is a surjective linear operator for every $x \in E$.

Theorem

- (Azagra, Cepedello 2004): Let E be a separable Hilbert space. Then property (P_{∞}) holds for the pair (E, \mathbb{R}^d) .
- (Azagra, Jiménez-Sevilla 2007): Let E be a Banach space with separable dual. Then property (P_1) holds for the pair (E, \mathbb{R}) .
- (Azagra, Dobrowolski, García-Bravo 2019): Let $E=c_0,\ell_p,L^p$, 1 . Let <math>F be a Banach space, and assume that there exists a bounded linear surjective operator from E onto F. Then property (P_k) holds for the pair (E,F), where k denotes the order of smoothness of the norm of the space E.

Different question

We are given a continuous function $f:E\to\mathbb{R}^d$ of class C^1 and so that C_f is included in some open set U.

Question: Are we able not only to uniformly approximate f by another C^1 function g without critical points but also

- ullet to make g be equal to f outside U?
- ullet to get an approximation in the C^1 -fine topology?

Theorem (M. García-Bravo 2019)

Let $E=c_0,\ell_p$ with $1< p<\infty$. Let $f:E\to \mathbb{R}^d$ be a C^1 function and $\varepsilon:E\to (0,\infty)$ a continuous function. Take any open set $U\supset C_f$. Then there exists a C^1 function $g:E\to \mathbb{R}^d$ such that,

- $||f(x) g(x)|| \le \varepsilon(x) \text{ for all } x \in E;$
- **1** Dg(x) is surjective for all $x \in E$, i.e. φ has no critical points; and
- If $E = c_0$ we also get $||Df(x) Dg(x)|| \le \varepsilon(x)$ for all $x \in E$.

Sketch of the proof: $f: c_0 \to \mathbb{R}$, $\varepsilon(x) = \varepsilon > 0$

Theorem (Real-valued case of c_0)

Let $f: c_0 \to \mathbb{R}$ be a C^1 function so that $C_f = \{x \in c_o : f'(x) = 0\} \subset U$ for some open set. Then for every $\varepsilon > 0$ there exists a C^1 function $g: c_0 \to \mathbb{R}$ such that,

- f(x) = g(x) for all $x \in c_0 \setminus U$; and
- **3** $g'(x) \neq 0$ for all $x \in c_0$, i.e. g has no critical points;
 - **Step 1**: Construct a C^1 function $g:U\to\mathbb{R}$ such that
 - $|f(x) g(x)| \le \varepsilon \text{ for every } x \in U.$
 - $||f'(x) g'(x)|| \le \varepsilon$ for every $x \in U$.
 - $C_q = \emptyset$

Use of C^1 -fine approximation methods due to N. Moulis (1971).

• Step 2: We extend the function g to the whole space c_0 by letting it be equal to f outside U. Because of the C^1 -fine approximation of Step 1 this extension is still of class C^1 on c_0 and also $C_g = \emptyset$

IMPORTANT FACT: c_0 has an equivalent norm of class C^{∞} which locally depends on finitely many coordinates (LFC). We will work with this norm.

Definition

 $||\cdot||$ is LFC if for every $x\in c_0$ there exists $m_x\in\mathbb{N}$, an open set U_x , some linear functionals $L_1,\ldots,L_{m_x}\in c_0^*=\ell_1$ and a function $\gamma:\mathbb{R}^{m_x}\to\mathbb{R}$ so that for all $y\in U_x$,

$$||y|| = \gamma(L_1(y), \dots L_{m_x}(y)).$$

In particular, if $||\cdot||$ is smooth, $D||\cdot||(y) \in span\{L_1,\ldots,L_{m_x}\}.$

Note: $||\cdot||_{\infty}$ on c_0 is LFC but is not of class C^1 .

Firstly define $\{h_j\}_{j\in\mathbb{N}}$ to be a C^∞ partition of unity subordinate to some open covering $\{B(x^j,r_j)\}_{j\in\mathbb{N}}$. By the property on the norm of being LFC for each ball $B(x^j,r_j)$ there is $L_{j(1)},\ldots,L_{j(m_j)}\in\ell_1$ so that

$$D||\cdot||(y) \in span\{L_{j(1)}, \dots, L_{j(m_j)}\} \ \forall y \in B(x^j, r_j).$$

Therefore for all $y \in U$ and $j \in \mathbb{N}$

$$D||\cdot||(y) \in span\{L_{k(1)}, \dots, L_{k(m_k)} : k \in \mathbb{N}\}$$
 and also $h'_j(y) \in span\{L_{k(1)}, \dots, L_{k(m_k)} : k \in \mathbb{N}\}.$

Secondly use a technique from Moulis (1971), used for C^1 -fine approximations, to find for each ball $B(x^j,r_j)$ an approximation of $f(x^j) + f'(x^j)(x-x^j) - f(x)$ by a C^1 function δ_j so that

- $||\delta'_j(y)||$ is small.
- $\bullet \ \delta'_j(y) \in span\{L_{k(1)}, \dots, L_{k(m_k)}, e_k^* : k \in \mathbb{N}\}.$

Let us define finally

$$g(x) := \sum_{i=1}^{\infty} h_j(x) \left[f(x^j) + f'(x^j)(x - x^j) - \delta_j(x) + T_j(x - x^j) \right].$$

Definition of T_j : It is an element of $L(c_0,\mathbb{R})=c_0^*=\ell_1$ satisfying that

$$\left\{ \begin{array}{l} ||T_j|| \text{ is small.} \\ T_j \notin span\{e_k^*, f'(x^k), L_{k(1)}, \ldots, L_{k(l_k)}, T_1, \ldots, T_{j-1}, \colon k \in \mathbb{N} \}. \end{array} \right.$$

We have

$$g(x) = \sum_{\substack{j=1\\n}}^{\infty} h_j(x) \left[f(x^j) + f'(x^j)(x - x^j) - \delta_j(x) + T_j(x - x^j) \right]$$

$$\begin{split} g'(y) = & \sum_{j=1} h_j'(y) \left[f(x^j) + f'(x^j)(y-x^j) - \delta_j(y) + T_j(y-x^j) \right] \\ & + h_j(y) \left[f'(x^j) - \delta_j'(y) + T_j \right], \quad \text{for all } y \in B(x^n, r_n). \end{split}$$

One can check that $|f(x) - g(x)|, ||f'(x) - g'(x)|| \le \varepsilon$ for all $x \in U$.

For all $y \in B(x^n, r_n)$ we have

$$g'(y) = \sum_{j=1}^{n} \frac{h'_{j}(y)}{j} \left[f(x^{j}) + f'(x^{j})(y - x^{j}) - \delta_{j}(y) + T_{j}(y - x^{j}) \right]$$

+ $h_{j}(y) \left[f'(x^{j}) - \delta'_{j}(y) + T_{j} \right]$

Observations:

- $h'_{i}(y) \in span\{L_{k(1)}, \ldots, L_{k(m_{k})}: k \in \mathbb{N}\}$ for all $y \in U$ and $j=1,\ldots,n$.
- $\delta'_i(y) \in span\{L_{k(1)}, \ldots, L_{k(m_k)}, e_k^* : k \in \mathbb{N}\}$ for all $y \in U$ and $j=1,\ldots,n$.

However

$$T_j \notin span\{e_k^*, f'(x^k), L_{k(1)}, \dots, L_{k(m_k)}, T_1, \dots, T_{j-1}, : k \in \mathbb{N}\}, \text{ hence}$$

$$T_n \notin span\{h'_j(y), f'(x^j), \delta'_j(y), T_1, \dots, T_{n-1} : j = 1, \dots, n\}$$

and so we can conclude that $g'(y) \neq 0$ for all $y \in U$.

Open question: C^k -fine approximations

An important open question in the theory of smooth approximations in Banach spaces is the following.

Problem

If we have a C^k function $f:E\to F$ between Banach spaces. Can we find a C^p (p>k) function $g:E\to F$ that approximates f in the C^k -fine topology.

What is known:

- **9** Every C^k function $f: \mathbb{R}^n \to \mathbb{R}^d$ can be uniformly approximated by analytic ones in the C^k -fine topology (Whiteny, 1934).
- ② For $E = c_0, \ell_p, 1 , every <math>C^1$ function $f : E \to F$ can be approximated by C^k functions in the C^1 -fine topology (Moulis 1971), with k being the order of smoothness of the space E.
- **1** In the space c_0 we cannot approximate C^2 functions by C^{∞} functions in the C^2 -fine topology (Wells, 1969).

THANK YOU FOR YOUR ATTENTION!!