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SSD

We say that the norm of a Banach space X is strongly subdifferentiable
(SSD, for short) at a point u ∈ SX if the one-sided limit

lim
t→0+

1

t
(‖u + tx‖ − 1)

exists uniformly for x ∈ BX .

The norm is Fréchet differentiable iff it is Gâteaux and SSD.

Consider φn on BX defined by

φn(x) =
1

n

(∥∥∥u +
x

n

∥∥∥− 1
)

= ‖nu + x‖ − n.

Then, the norm of X is SSD iff {φn} converges uniformly on BX .
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SSD

The norm of any finite-dimensional space is SSD.
(Dini’s theorem)

The sup-norm on c0 is SSD at every point of c0.
(C. Franchetti, 1986)

The set of all SSD points of the sup-norm of `∞ is not a Gδ in `∞.
(G. Godefroy, V. Montesinos, V. Zizler, 1995)

The norm of `1 is only SSD at points in S`1 which are sequences with
finitely many nonzero terms.
(J.R. Giles, D A. Gregory, B. Sims, 1978)

A Banach space with an SSD norm is Asplund.
(C. Franchetti and R. Payá, 1993)
(G. Godefroy, V. Montesinos, V. Zizler, 1995)
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SSD

(C. Franchetti and R. Payá, 1993)

Suppose that X is SSD at x ∈ SX .

Then, there is δ(x , ε) > 0 such that
for all y ∈ SX with y ≈δ x , then

d(D(x),D(y)) = inf{‖z∗−y∗‖ : ‖z∗‖ = z∗(x) = 1 = y∗(y) = ‖y∗‖} < ε.

Let x∗ ∈ SX∗ be such that

|x∗(x)| ≈ 1− δ2

2
.

By the Bollobás theorem, there are (y , y∗) ∈ SX × SX∗ such that

y∗(y) = 1, y ≈δ x , and y∗ ≈δ x∗.

If z∗ ∈ SX∗ is such that z∗(x) = 1, since y ≈δ x and y∗(y) = 1, we have
z∗ ≈ y∗ and then z∗ ≈ x∗.
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Motivation

A pair (X ,Y ) has property ? if given ε > 0 and x ∈ SX ,

there is η(ε, x) > 0
such that whenever T ∈ L(X ,Y ) with ‖T‖ = 1 satisfies

‖T (x)‖ > 1− η(ε, x),

there is S ∈ L(X ,Y ) with ‖S‖ = 1 such that

‖S(x)‖ = 1 and S ≈ T .

Theorem (C. Franchetti and R. Payá, 1993)

The pair (X ,K) has the property ? iff X is SSD.
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SSD

If X is not SSD,

then there are ε0 > 0 and x0 ∈ SX such that for each
n ∈ N, there is x∗n ∈ SX∗ such that

1 ≥ |x∗n (x0)| ≥ 1− 1

n

and whenever x∗ ∈ SX∗ satisfies ‖x∗ − x∗n ‖ < ε0, we have |x∗(x0)| < 1.

By the Banach-Alaoglu theorem, there is a subnet of (x∗n ) such that x∗n
w∗−→

x∗0 for some x∗0 ∈ BX∗ . Then, x∗n (x0) −→ x∗0 (x0) and since |x∗n (x0)| −→ 1,
we get that |x∗0 (x0)| = 1 and x∗0 ∈ SX∗ .

A dual Banach space X ∗ has the w∗-Kadec-Klee property if the w∗ and
norm topology coincide in SX∗ .

Theorem

If X ∗ has the w∗-Kadec-Klee property, then the norm of X is SSD.
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Property ? for operators

Examples of linear operators

(X ,Y ) has property ? for some Y ⇒ X must be SSD.

(X ,Y ) has property ? for finite-dimensional spaces X ,Y .

(`N1 ,X ) has property ? when X is uniformly convex.

(c0, Lp(µ)) has property ? for µ positive measures and 1 ≤ p <∞.
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SSD in projective tensor products

We say that (X ,Y ;Z ) has property ? if

given ε > 0 and (x , y) ∈ SX ×SY ,
there is η(ε, (x , y)) > 0 such that whenever A ∈ L(X ,Y ;Z ) with ‖A‖ = 1
satisfies

‖A(x , y)‖ > 1− η(ε, (x , y)),

there is B ∈ L(X ,Y ;Z ) with ‖B‖ = 1 such that

‖B(x , y)‖ = 1 and B ≈ A.
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SSD in projective tensor products

If X ,Y , Z are finite-dimensional, then (X ,Y ;Z ) has property ?.

If (X ,Y ;Z ) has property ?, then so does (X ,Y ;K).

If (X ,Y ;Z ) has property ?, then so do (X ,K) and (Y ,K).
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SSD in projective tensor products

If X ,Y , Z are finite-dimensional, then (X ,Y ;Z ) has property ?.

If (X ,Y ;Z ) has property ?, then so does (X ,Y ;K).

If (X ,Y ;Z ) has property ?, then X and Y are both SSD.
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SSD in projective tensor products

Recall that L(`s , `r ) =

L(`s , `r ′ ;K) = (`s⊗̂π`r ′)∗.

Since `s⊗̂π`r ′ is reflexive, then B(`s⊗̂π`r′ )
∗ is w∗-sequentially compact

and then (`s⊗̂π`r ′)∗ satisfies the sequential-w∗-uniform-Kadec-Klee
property for 1 < r < 2 < s <∞
(S.J. Dilworth and D. Kutzarova, 1995).

Fix ε > 0 and (x , y) ∈ S`p × S`q . Consider η(ε, x ⊗ y) > 0. Let A ∈
L(`p, `q;K) with ‖A‖ = 1 with

|A(x , y)| > 1− η(ε, x ⊗ y).

Consider Â ∈ S(`p⊗̂π`q)∗ . Then,

|Â(x ⊗ y)| = |A(x , y)| > 1− η(ε, x ⊗ y).

Then, there is B̂ ∈ S(`p⊗̂π`q)∗ with

|B(x , y)| = |B̂(x ⊗ y)| = 1 and ‖B − A‖ = ‖B̂ − Â‖ < ε.
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SSD in projective tensor products

The space L(`s , `r ) = L(`s , `r ′ ;K) = (`s⊗̂π`r ′)∗ has the sequential
w∗-Kadec-Klee property for 1 < r < 2 < s <∞.
(S.J. Dilworth and D. Kutzarova, 1995)
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SSD in projective tensor products

As a consequence...

(a). If 2 < p, q <∞, then `p⊗̂π`q is SSD.

(b). If 2 < p, q <∞, then (`p, `q;K) has property ?.

(c). If p−1 + q−1 ≥ 1 or one of them is 1 or ∞, then `p⊗̂π`q is not SSD.
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Questions

(1) (X, Y) has property ? =⇒

given ε > 0 and x ∈ SX , there is η(ε, x) > 0
such that whenever T ∈ L(X ,Y ) with ‖T‖ = 1 satisfies

‖T (x)‖ > 1− η(ε, x),

there are S ∈ L(X ,Y ) with ‖S‖ = 1 and x0 ∈ SX such that

‖S(x0)‖ = 1, x0 ≈ x , and S ≈ T .

=⇒ NA(X ,Y ) = L(X ,Y )?

(2) ∃ more Banach spaces X and Y such that X ⊗̂πY is SSD?
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