Strongly subdifferentiability and the Bollobás theorem

SHELDON DANTAS

CZECH TECHNICAL UNIVERSITY IN PRAGUE FACULTY OF ELECTRICAL ENGINEERING DEPARTMENT OF MATHEMATICS

Research supported by the project OPVVV CAAS CZ.02.1.01/0.0/0.0/16.019/0000778, Excelentní výzkum

Centrum pokročilých aplikovaných přírodních věd

(Center for Advanced Applied Science)

Joint work with S.K. Kim, H.J. Lee, and M. Mazzitelli V Congreso de Jóvenes Investigadores, 2020, Castellón, Spain

Strong subdifferentiability of the norm

We say that the norm of a Banach space X is strongly subdifferentiable (SSD, for short) at a point $u \in S_X$ if the one-sided limit

$$\lim_{t \to 0^+} \frac{1}{t} (\|u + tx\| - 1)$$

exists uniformly for $x \in B_X$.

We say that the norm of a Banach space X is strongly subdifferentiable (SSD, for short) at a point $u \in S_X$ if the one-sided limit

$$\lim_{t \to 0^+} \frac{1}{t} (\|u + tx\| - 1)$$

exists uniformly for $x \in B_X$.

• The norm is Fréchet differentiable iff it is Gâteaux and SSD.

We say that the norm of a Banach space X is strongly subdifferentiable (SSD, for short) at a point $u \in S_X$ if the one-sided limit

$$\lim_{t \to 0^+} \frac{1}{t} (\|u + tx\| - 1)$$

exists uniformly for $x \in B_X$.

- The norm is Fréchet differentiable iff it is Gâteaux and SSD.
- Consider ϕ_n on B_X defined by

$$\phi_n(x) = \frac{1}{n} \left(\left\| u + \frac{x}{n} \right\| - 1 \right) = \|nu + x\| - n.$$

We say that the norm of a Banach space X is strongly subdifferentiable (SSD, for short) at a point $u \in S_X$ if the one-sided limit

$$\lim_{t \to 0^+} \frac{1}{t} (\|u + tx\| - 1)$$

exists uniformly for $x \in B_X$.

- The norm is Fréchet differentiable iff it is Gâteaux and SSD.
- Consider ϕ_n on B_X defined by

$$\phi_n(x) = \frac{1}{n} \left(\left\| u + \frac{x}{n} \right\| - 1 \right) = \|nu + x\| - n.$$

• Then, the norm of X is SSD iff $\{\phi_n\}$ converges uniformly on B_X .

 The norm of any finite-dimensional space is SSD. (Dini's theorem)

- The norm of any finite-dimensional space is SSD. (Dini's theorem)
- The sup-norm on c_0 is SSD at every point of c_0 . (C. Franchetti, 1986)

- The norm of any finite-dimensional space is SSD. (Dini's theorem)
- The sup-norm on c_0 is SSD at every point of c_0 . (C. Franchetti, 1986)
- The set of all SSD points of the sup-norm of ℓ_{∞} is not a G_{δ} in ℓ_{∞} . (G. Godefroy, V. Montesinos, V. Zizler, 1995)

- The norm of any finite-dimensional space is SSD. (Dini's theorem)
- The sup-norm on c_0 is SSD at every point of c_0 . (C. Franchetti, 1986)
- The set of all SSD points of the sup-norm of ℓ_{∞} is not a G_{δ} in ℓ_{∞} . (G. Godefroy, V. Montesinos, V. Zizler, 1995)
- The norm of ℓ_1 is only SSD at points in S_{ℓ_1} which are sequences with finitely many nonzero terms.
 - (J.R. Giles, D A. Gregory, B. Sims, 1978)

- The norm of any finite-dimensional space is SSD. (Dini's theorem)
- The sup-norm on c_0 is SSD at every point of c_0 . (C. Franchetti, 1986)
- The set of all SSD points of the sup-norm of ℓ_{∞} is not a G_{δ} in ℓ_{∞} . (G. Godefroy, V. Montesinos, V. Zizler, 1995)
- The norm of ℓ_1 is only SSD at points in S_{ℓ_1} which are sequences with finitely many nonzero terms.
 - (J.R. Giles, D A. Gregory, B. Sims, 1978)
- A Banach space with an SSD norm is Asplund.
 - (C. Franchetti and R. Payá, 1993)
 - (G. Godefroy, V. Montesinos, V. Zizler, 1995)

(C. Franchetti and R. Payá, 1993)

Suppose that X is SSD at $x \in S_X$.

(C. Franchetti and R. Payá, 1993)

Suppose that X is SSD at $x \in S_X$. Then, there is $\delta(x, \varepsilon) > 0$ such that

(C. Franchetti and R. Payá, 1993)

Suppose that X is SSD at $x \in S_X$. Then, there is $\delta(x, \varepsilon) > 0$ such that for all $y \in S_X$ with $y \approx_{\delta} x$, then

$$d(D(x),D(y)) = \inf\{\|z^* - y^*\| : \|z^*\| = z^*(x) = 1 = y^*(y) = \|y^*\|\} < \varepsilon.$$

(C. Franchetti and R. Payá, 1993)

Suppose that X is SSD at $x \in S_X$. Then, there is $\delta(x, \varepsilon) > 0$ such that for all $y \in S_X$ with $y \approx_{\delta} x$, then

$$d(D(x),D(y)) = \inf\{\|z^* - y^*\| : \|z^*\| = z^*(x) = 1 = y^*(y) = \|y^*\|\} < \varepsilon.$$

Let $x^* \in S_{X^*}$ be such that

$$|x^*(x)| \approx 1 - \frac{\delta^2}{2}$$
.

By the Bollobás theorem, there are $(y, y^*) \in S_X \times S_{X^*}$ such that

(C. Franchetti and R. Payá, 1993)

Suppose that X is SSD at $x \in S_X$. Then, there is $\delta(x, \varepsilon) > 0$ such that for all $y \in S_X$ with $y \approx_{\delta} x$, then

$$d(D(x),D(y)) = \inf\{\|z^* - y^*\| : \|z^*\| = z^*(x) = 1 = y^*(y) = \|y^*\|\} < \varepsilon.$$

Let $x^* \in S_{X^*}$ be such that

$$|x^*(x)|\approx 1-\frac{\delta^2}{2}.$$

By the Bollobás theorem, there are $(y, y^*) \in S_X \times S_{X^*}$ such that

$$y^*(y) = 1$$
, $y \approx_{\delta} x$, and $y^* \approx_{\delta} x^*$.

(C. Franchetti and R. Payá, 1993)

Suppose that X is SSD at $x \in S_X$. Then, there is $\delta(x, \varepsilon) > 0$ such that for all $y \in S_X$ with $y \approx_{\delta} x$, then

$$d(D(x),D(y)) = \inf\{\|z^* - y^*\| : \|z^*\| = z^*(x) = 1 = y^*(y) = \|y^*\|\} < \varepsilon.$$

Let $x^* \in S_{X^*}$ be such that

$$|x^*(x)|\approx 1-\frac{\delta^2}{2}.$$

By the Bollobás theorem, there are $(y, y^*) \in S_X \times S_{X^*}$ such that

$$y^*(y) = 1$$
, $y \approx_{\delta} x$, and $y^* \approx_{\delta} x^*$.

If $z^* \in S_{X^*}$ is such that $z^*(x) = 1$,

(C. Franchetti and R. Payá, 1993)

Suppose that X is SSD at $x \in S_X$. Then, there is $\delta(x, \varepsilon) > 0$ such that for all $y \in S_X$ with $y \approx_{\delta} x$, then

$$d(D(x),D(y)) = \inf\{\|z^* - y^*\| : \|z^*\| = z^*(x) = 1 = y^*(y) = \|y^*\|\} < \varepsilon.$$

Let $x^* \in S_{X^*}$ be such that

$$|x^*(x)| \approx 1 - \frac{\delta^2}{2}$$
.

By the Bollobás theorem, there are $(y, y^*) \in S_X \times S_{X^*}$ such that

$$y^*(y) = 1$$
, $y \approx_{\delta} x$, and $y^* \approx_{\delta} x^*$.

If $z^* \in S_{X^*}$ is such that $z^*(x) = 1$, since $y \approx_{\delta} x$ and $y^*(y) = 1$,

(C. Franchetti and R. Payá, 1993)

Suppose that X is SSD at $x \in S_X$. Then, there is $\delta(x, \varepsilon) > 0$ such that for all $y \in S_X$ with $y \approx_{\delta} x$, then

$$d(D(x),D(y)) = \inf\{\|z^* - y^*\| : \|z^*\| = z^*(x) = 1 = y^*(y) = \|y^*\|\} < \varepsilon.$$

Let $x^* \in S_{X^*}$ be such that

$$|x^*(x)| \approx 1 - \frac{\delta^2}{2}$$
.

By the Bollobás theorem, there are $(y, y^*) \in S_X \times S_{X^*}$ such that

$$y^*(y) = 1$$
, $y \approx_{\delta} x$, and $y^* \approx_{\delta} x^*$.

If $z^* \in S_{X^*}$ is such that $z^*(x) = 1$, since $y \approx_{\delta} x$ and $y^*(y) = 1$, we have $z^* \approx y^*$ and then $z^* \approx x^*$.

(C. Franchetti and R. Payá, 1993)

Suppose that X is SSD at $x \in S_X$. Then, there is $\delta(x, \varepsilon) > 0$ such that for all $y \in S_X$ with $y \approx_{\delta} x$, then

$$d(D(x), D(y)) = \inf\{\|z^* - y^*\| : \|z^*\| = z^*(x) = 1 = y^*(y) = \|y^*\|\} < \varepsilon.$$

Let $x^* \in S_{X^*}$ be such that

$$|x^*(x)|\approx 1-\frac{\delta^2}{2}.$$

By the Bollobás theorem, there are $(y, y^*) \in S_X \times S_{X^*}$ such that

$$y^*(y) = 1$$
, $y \approx_{\delta}$, and $y^* \approx_{\delta} x^*$.

If $z^* \in S_{X^*}$ is such that $z^*(x) = 1$, since $y \approx_{\delta} x$ and $y^*(y) = 1$, we have $z^* \approx y^*$ and then $z^* \approx x^*$.

A pair (X, Y) has property \star if given $\varepsilon > 0$ and $x \in S_X$,

A pair (X,Y) has property \star if given $\varepsilon>0$ and $x\in S_X$, there is $\eta(\varepsilon,x)>0$ such that whenever $T\in\mathcal{L}(X,Y)$ with $\|T\|=1$ satisfies

$$||T(x)|| > 1 - \eta(\varepsilon, x),$$

A pair (X, Y) has property \star if given $\varepsilon > 0$ and $x \in S_X$, there is $\eta(\varepsilon, x) > 0$ such that whenever $T \in \mathcal{L}(X, Y)$ with ||T|| = 1 satisfies

$$||T(x)|| > 1 - \eta(\varepsilon, x),$$

there is $S \in \mathcal{L}(X, Y)$ with ||S|| = 1 such that

A pair (X, Y) has property \star if given $\varepsilon > 0$ and $x \in S_X$, there is $\eta(\varepsilon, x) > 0$ such that whenever $T \in \mathcal{L}(X, Y)$ with ||T|| = 1 satisfies

$$||T(x)|| > 1 - \eta(\varepsilon, x),$$

there is $S \in \mathcal{L}(X, Y)$ with ||S|| = 1 such that

$$||S(x)|| = 1$$
 and $S \approx T$.

A pair (X, Y) has property \star if given $\varepsilon > 0$ and $x \in S_X$, there is $\eta(\varepsilon, x) > 0$ such that whenever $T \in \mathcal{L}(X, Y)$ with ||T|| = 1 satisfies

$$||T(x)|| > 1 - \eta(\varepsilon, x),$$

there is $S \in \mathcal{L}(X, Y)$ with ||S|| = 1 such that

$$||S(x)|| = 1$$
 and $S \approx T$.

Theorem (C. Franchetti and R. Payá, 1993)

The pair (X, \mathbb{K}) has the property \star iff X is SSD.

If X is not SSD,

If X is not SSD, then there are $\varepsilon_0 > 0$ and $x_0 \in S_X$ such that

If X is *not* SSD, then there are $\varepsilon_0 > 0$ and $x_0 \in S_X$ such that for each $n \in \mathbb{N}$, there is $x_n^* \in S_{X^*}$ such that

If X is not SSD, then there are $\varepsilon_0 > 0$ and $x_0 \in S_X$ such that for each $n \in \mathbb{N}$, there is $x_n^* \in S_{X^*}$ such that

$$1 \ge |x_n^*(x_0)| \ge 1 - \frac{1}{n}$$

and

If X is not SSD, then there are $\varepsilon_0 > 0$ and $x_0 \in S_X$ such that for each $n \in \mathbb{N}$, there is $x_n^* \in S_{X^*}$ such that

$$1 \ge |x_n^*(x_0)| \ge 1 - \frac{1}{n}$$

and whenever $x^* \in S_{X^*}$ satisfies $||x^* - x_n^*|| < \varepsilon_0$, we have $|x^*(x_0)| < 1$.

If X is not SSD, then there are $\varepsilon_0 > 0$ and $x_0 \in S_X$ such that for each $n \in \mathbb{N}$, there is $x_n^* \in S_{X^*}$ such that

$$1 \ge |x_n^*(x_0)| \ge 1 - \frac{1}{n}$$

and whenever $x^* \in S_{X^*}$ satisfies $||x^* - x_n^*|| < \varepsilon_0$, we have $|x^*(x_0)| < 1$.

By the Banach-Alaoglu theorem,

If X is not SSD, then there are $\varepsilon_0 > 0$ and $x_0 \in S_X$ such that for each $n \in \mathbb{N}$, there is $x_n^* \in S_{X^*}$ such that

$$1 \ge |x_n^*(x_0)| \ge 1 - \frac{1}{n}$$

and whenever $x^* \in S_{X^*}$ satisfies $||x^* - x_n^*|| < \varepsilon_0$, we have $|x^*(x_0)| < 1$.

By the Banach-Alaoglu theorem, there is a subnet of (x_n^*) such that $x_n^* \xrightarrow{w^*} x_0^*$ for some $x_0^* \in B_{X^*}$.

If X is not SSD, then there are $\varepsilon_0 > 0$ and $x_0 \in S_X$ such that for each $n \in \mathbb{N}$, there is $x_n^* \in S_{X^*}$ such that

$$1 \ge |x_n^*(x_0)| \ge 1 - \frac{1}{n}$$

and whenever $x^* \in S_{X^*}$ satisfies $||x^* - x_n^*|| < \varepsilon_0$, we have $|x^*(x_0)| < 1$.

By the Banach-Alaoglu theorem, there is a subnet of (x_n^*) such that $x_n^* \xrightarrow{w^*} x_0^*$ for some $x_0^* \in B_{X^*}$. Then, $x_n^*(x_0) \longrightarrow x_0^*(x_0)$ and since $|x_n^*(x_0)| \longrightarrow 1$, we get that $|x_0^*(x_0)| = 1$ and $x_0^* \in S_{X^*}$.

If X is not SSD, then there are $\varepsilon_0 > 0$ and $x_0 \in S_X$ such that for each $n \in \mathbb{N}$, there is $x_n^* \in S_{X^*}$ such that

$$1 \ge |x_n^*(x_0)| \ge 1 - \frac{1}{n}$$

and whenever $x^* \in S_{X^*}$ satisfies $||x^* - x_n^*|| < \varepsilon_0$, we have $|x^*(x_0)| < 1$.

By the Banach-Alaoglu theorem, there is a subnet of (x_n^*) such that $x_n^* \xrightarrow{w^*} x_0^*$ for some $x_0^* \in B_{X^*}$. Then, $x_n^*(x_0) \longrightarrow x_0^*(x_0)$ and since $|x_n^*(x_0)| \longrightarrow 1$, we get that $|x_0^*(x_0)| = 1$ and $x_0^* \in S_{X^*}$.

A dual Banach space X^* has the w^* -Kadec-Klee property if the w^* and norm topology coincide in S_{X^*} .

If X is not SSD, then there are $\varepsilon_0 > 0$ and $x_0 \in S_X$ such that for each $n \in \mathbb{N}$, there is $x_n^* \in S_{X^*}$ such that

$$1 \ge |x_n^*(x_0)| \ge 1 - \frac{1}{n}$$

and whenever $x^* \in S_{X^*}$ satisfies $||x^* - x_n^*|| < \varepsilon_0$, we have $|x^*(x_0)| < 1$.

By the Banach-Alaoglu theorem, there is a subnet of (x_n^*) such that $x_n^* \xrightarrow{w^*} x_0^*$ for some $x_0^* \in B_{X^*}$. Then, $x_n^*(x_0) \longrightarrow x_0^*(x_0)$ and since $|x_n^*(x_0)| \longrightarrow 1$, we get that $|x_0^*(x_0)| = 1$ and $x_0^* \in S_{X^*}$.

A dual Banach space X^* has the w^* -Kadec-Klee property if the w^* and norm topology coincide in S_{X^*} .

Theorem

If X^* has the w^* -Kadec-Klee property, then the norm of X is SSD.

SSD

Theorem

If X^* has the w^* -Kadec-Klee property, then the norm of X is SSD.

• The Hardy space H^1 of analytic functions on the ball,

SSD

Theorem

If X^* has the w^* -Kadec-Klee property, then the norm of X is SSD.

- The Hardy space H^1 of analytic functions on the ball,
- The Lorentz spaces $L_{p,1}(\mu)$, and

SSD

Theorem

If X^* has the w^* -Kadec-Klee property, then the norm of X is SSD.

- The Hardy space H^1 of analytic functions on the ball,
- The Lorentz spaces $L_{p,1}(\mu)$, and
- The trace class C_1 .

are non-reflexive dual spaces that satisfy the w^* -Kadec-Klee property.

Examples of linear operators

• (X, Y) has property \star for some $Y \Rightarrow X$ must be SSD.

Examples of linear operators

- (X, Y) has property \star for some $Y \Rightarrow X$ must be SSD.
- (X, Y) has property \star for finite-dimensional spaces X, Y.

Examples of linear operators

- (X, Y) has property \star for some $Y \Rightarrow X$ must be SSD.
- (X, Y) has property \star for finite-dimensional spaces X, Y.
- (ℓ_1^N, X) has property \star when X is uniformly convex.

Examples of linear operators

- (X, Y) has property \star for some $Y \Rightarrow X$ must be SSD.
- (X, Y) has property \star for finite-dimensional spaces X, Y.
- (ℓ_1^N, X) has property \star when X is uniformly convex.
- $(c_0, L_p(\mu))$ has property \star for μ positive measures and $1 \le p < \infty$.

We say that (X, Y; Z) has property \star if

We say that (X, Y; Z) has property \star if given $\varepsilon > 0$ and $(x, y) \in S_X \times S_Y$,

We say that (X,Y;Z) has property \star if given $\varepsilon>0$ and $(x,y)\in S_X\times S_Y$, there is $\eta(\varepsilon,(x,y))>0$ such that whenever $A\in\mathcal{L}(X,Y;Z)$ with $\|A\|=1$ satisfies

$$||A(x,y)|| > 1 - \eta(\varepsilon,(x,y)),$$

We say that (X,Y;Z) has property \star if given $\varepsilon>0$ and $(x,y)\in S_X\times S_Y$, there is $\eta(\varepsilon,(x,y))>0$ such that whenever $A\in\mathcal{L}(X,Y;Z)$ with $\|A\|=1$ satisfies

$$||A(x,y)|| > 1 - \eta(\varepsilon,(x,y)),$$

there is $B \in \mathcal{L}(X, Y; Z)$ with ||B|| = 1 such that

$$||B(x,y)|| = 1$$
 and $B \approx A$.

• If X, Y, Z are finite-dimensional, then (X, Y; Z) has property \star .

- If X, Y, Z are finite-dimensional, then (X, Y; Z) has property \star .
- If (X, Y; Z) has property \star , then so does $(X, Y; \mathbb{K})$.

- If X, Y, Z are finite-dimensional, then (X, Y; Z) has property \star .
- If (X, Y; Z) has property \star , then so does $(X, Y; \mathbb{K})$.
- If (X, Y; Z) has property \star , then so do (X, \mathbb{K}) and (Y, \mathbb{K}) .

- If X, Y, Z are finite-dimensional, then (X, Y; Z) has property \star .
- If (X, Y; Z) has property \star , then so does $(X, Y; \mathbb{K})$.
- If (X, Y; Z) has property \star , then X and Y are both SSD.

• Recall that $\mathcal{L}(\ell_s,\ell_r)=$

• Recall that $\mathcal{L}(\ell_s,\ell_r) = \mathcal{L}(\ell_s,\ell_{r'};\mathbb{K}) =$

• Recall that $\mathcal{L}(\ell_s, \ell_r) = \mathcal{L}(\ell_s, \ell_{r'}; \mathbb{K}) = (\ell_s \hat{\otimes}_{\pi} \ell_{r'})^*$.

- Recall that $\mathcal{L}(\ell_s, \ell_r) = \mathcal{L}(\ell_s, \ell_{r'}; \mathbb{K}) = (\ell_s \hat{\otimes}_{\pi} \ell_{r'})^*$.
- Since $\ell_s \hat{\otimes}_{\pi} \ell_{r'}$ is reflexive, then $B_{(\ell_s \hat{\otimes}_{\pi} \ell_{r'})^*}$ is w^* -sequentially compact

- Recall that $\mathcal{L}(\ell_s, \ell_r) = \mathcal{L}(\ell_s, \ell_{r'}; \mathbb{K}) = (\ell_s \hat{\otimes}_{\pi} \ell_{r'})^*$.
- Since $\ell_s \hat{\otimes}_\pi \ell_{r'}$ is reflexive, then $B_{(\ell_s \hat{\otimes}_\pi \ell_{r'})^*}$ is w^* -sequentially compact and then $(\ell_s \hat{\otimes}_\pi \ell_{r'})^*$ satisfies the sequential- w^* -uniform-Kadec-Klee property for $1 < r < 2 < s < \infty$ (S.J. Dilworth and D. Kutzarova, 1995).

- Recall that $\mathcal{L}(\ell_s, \ell_r) = \mathcal{L}(\ell_s, \ell_{r'}; \mathbb{K}) = (\ell_s \hat{\otimes}_{\pi} \ell_{r'})^*$.
- Since $\ell_s \hat{\otimes}_\pi \ell_{r'}$ is reflexive, then $B_{(\ell_s \hat{\otimes}_\pi \ell_{r'})^*}$ is w^* -sequentially compact and then $(\ell_s \hat{\otimes}_\pi \ell_{r'})^*$ satisfies the sequential- w^* -uniform-Kadec-Klee property for $1 < r < 2 < s < \infty$ (S.J. Dilworth and D. Kutzarova, 1995).

Fix $\varepsilon > 0$ and $(x,y) \in S_{\ell_p} \times S_{\ell_q}$.

- Recall that $\mathcal{L}(\ell_s, \ell_r) = \mathcal{L}(\ell_s, \ell_{r'}; \mathbb{K}) = (\ell_s \hat{\otimes}_{\pi} \ell_{r'})^*$.
- Since $\ell_s \hat{\otimes}_\pi \ell_{r'}$ is reflexive, then $B_{(\ell_s \hat{\otimes}_\pi \ell_{r'})^*}$ is w^* -sequentially compact and then $(\ell_s \hat{\otimes}_\pi \ell_{r'})^*$ satisfies the sequential- w^* -uniform-Kadec-Klee property for $1 < r < 2 < s < \infty$ (S.J. Dilworth and D. Kutzarova, 1995).

Fix $\varepsilon > 0$ and $(x,y) \in S_{\ell_p} \times S_{\ell_q}$. Consider $\eta(\varepsilon, x \otimes y) > 0$.

- Recall that $\mathcal{L}(\ell_s, \ell_r) = \mathcal{L}(\ell_s, \ell_{r'}; \mathbb{K}) = (\ell_s \hat{\otimes}_{\pi} \ell_{r'})^*$.
- Since $\ell_s \hat{\otimes}_{\pi} \ell_{r'}$ is reflexive, then $B_{(\ell_s \hat{\otimes}_{\pi} \ell_{r'})^*}$ is w^* -sequentially compact and then $(\ell_s \hat{\otimes}_{\pi} \ell_{r'})^*$ satisfies the sequential- w^* -uniform-Kadec-Klee property for $1 < r < 2 < s < \infty$ (S.J. Dilworth and D. Kutzarova, 1995).

Fix $\varepsilon>0$ and $(x,y)\in S_{\ell_p}\times S_{\ell_q}$. Consider $\eta(\varepsilon,x\otimes y)>0$. Let $A\in\mathcal{L}(\ell_p,\ell_q;\mathbb{K})$ with $\|A\|=1$ with

$$|A(x,y)| > 1 - \eta(\varepsilon, x \otimes y).$$

- Recall that $\mathcal{L}(\ell_s, \ell_r) = \mathcal{L}(\ell_s, \ell_{r'}; \mathbb{K}) = (\ell_s \hat{\otimes}_{\pi} \ell_{r'})^*$.
- Since $\ell_s \hat{\otimes}_{\pi} \ell_{r'}$ is reflexive, then $B_{(\ell_s \hat{\otimes}_{\pi} \ell_{r'})^*}$ is w^* -sequentially compact and then $(\ell_s \hat{\otimes}_{\pi} \ell_{r'})^*$ satisfies the sequential- w^* -uniform-Kadec-Klee property for $1 < r < 2 < s < \infty$ (S.J. Dilworth and D. Kutzarova, 1995).

Fix $\varepsilon>0$ and $(x,y)\in S_{\ell_p}\times S_{\ell_q}$. Consider $\eta(\varepsilon,x\otimes y)>0$. Let $A\in \mathcal{L}(\ell_p,\ell_q;\mathbb{K})$ with $\|A\|=1$ with

$$|A(x,y)| > 1 - \eta(\varepsilon, x \otimes y).$$

Consider $\hat{A} \in S_{(\ell_p \hat{\otimes}_{\pi} \ell_q)^*}$.

- Recall that $\mathcal{L}(\ell_s, \ell_r) = \mathcal{L}(\ell_s, \ell_{r'}; \mathbb{K}) = (\ell_s \hat{\otimes}_{\pi} \ell_{r'})^*$.
- Since $\ell_s \hat{\otimes}_{\pi} \ell_{r'}$ is reflexive, then $B_{(\ell_s \hat{\otimes}_{\pi} \ell_{r'})^*}$ is w^* -sequentially compact and then $(\ell_s \hat{\otimes}_{\pi} \ell_{r'})^*$ satisfies the sequential- w^* -uniform-Kadec-Klee property for $1 < r < 2 < s < \infty$ (S.J. Dilworth and D. Kutzarova, 1995).

Fix $\varepsilon>0$ and $(x,y)\in S_{\ell_p}\times S_{\ell_q}$. Consider $\eta(\varepsilon,x\otimes y)>0$. Let $A\in \mathcal{L}(\ell_p,\ell_q;\mathbb{K})$ with $\|A\|=1$ with

$$|A(x,y)| > 1 - \eta(\varepsilon, x \otimes y).$$

Consider $\hat{A} \in S_{(\ell_p \hat{\otimes}_{\pi} \ell_q)^*}$. Then,

$$|\hat{A}(x \otimes y)| = |A(x,y)| > 1 - \eta(\varepsilon, x \otimes y).$$

- Recall that $\mathcal{L}(\ell_s, \ell_r) = \mathcal{L}(\ell_s, \ell_{r'}; \mathbb{K}) = (\ell_s \hat{\otimes}_{\pi} \ell_{r'})^*$.
- Since $\ell_s \hat{\otimes}_{\pi} \ell_{r'}$ is reflexive, then $B_{(\ell_s \hat{\otimes}_{\pi} \ell_{r'})^*}$ is w^* -sequentially compact and then $(\ell_s \hat{\otimes}_{\pi} \ell_{r'})^*$ satisfies the sequential- w^* -uniform-Kadec-Klee property for $1 < r < 2 < s < \infty$ (S.J. Dilworth and D. Kutzarova, 1995).

Fix $\varepsilon>0$ and $(x,y)\in S_{\ell_p}\times S_{\ell_q}$. Consider $\eta(\varepsilon,x\otimes y)>0$. Let $A\in \mathcal{L}(\ell_p,\ell_q;\mathbb{K})$ with $\|A\|=1$ with

$$|A(x,y)| > 1 - \eta(\varepsilon, x \otimes y).$$

Consider $\hat{A} \in S_{(\ell_p \hat{\otimes}_{\pi} \ell_q)^*}$. Then,

$$|\hat{A}(x \otimes y)| = |A(x,y)| > 1 - \eta(\varepsilon, x \otimes y).$$

Then, there is $\hat{B} \in S_{(\ell_p \hat{\otimes}_\pi \ell_q)^*}$ with

$$|B(x,y)| = |\hat{B}(x \otimes y)| = 1$$
 and $||B - A|| = ||\hat{B} - \hat{A}|| < \varepsilon$.

- The space $\mathcal{L}(\ell_s, \ell_r) = \mathcal{L}(\ell_s, \ell_{r'}; \mathbb{K}) = (\ell_s \hat{\otimes}_{\pi} \ell_{r'})^*$ has the sequential w^* -Kadec-Klee property for $1 < r < 2 < s < \infty$. (S.J. Dilworth and D. Kutzarova, 1995)
- Then, $(\ell_p \hat{\otimes}_{\pi} \ell_q; \mathbb{K})$ has the \star for $2 < p, q < \infty$.

Fix $\varepsilon > 0$ and $(x,y) \in S_{\ell_p} \times S_{\ell_q}$. Consider $\eta(\varepsilon, x \otimes y) > 0$. Let $A \in \mathcal{L}(\ell_p, \ell_q; \mathbb{K})$ with ||A|| = 1 with

$$|A(x,y)| > 1 - \eta(\varepsilon, x \otimes y).$$

Consider $\hat{A} \in S_{(\ell_p \hat{\otimes}_{\pi} \ell_q)^*}$. Then,

$$|\hat{A}(x \otimes y)| = |A(x,y)| > 1 - \eta(\varepsilon, x \otimes y).$$

Then, there is $\hat{B} \in S_{(\ell_n \hat{\otimes}_{\pi} \ell_a)^*}$ with

$$|B(x,y)| = |\hat{B}(x \otimes y)| = 1$$
 and $||B - A|| = ||\hat{B} - \hat{A}|| < \varepsilon$.

- The space $\mathcal{L}(\ell_s, \ell_r) = \mathcal{L}(\ell_s, \ell_{r'}; \mathbb{K}) = (\ell_s \hat{\otimes}_{\pi} \ell_{r'})^*$ has the sequential w^* -Kadec-Klee property for $1 < r < 2 < s < \infty$. (S.J. Dilworth and D. Kutzarova, 1995)
- Then, $(\ell_p \hat{\otimes}_{\pi} \ell_q; \mathbb{K})$ has the \star for $2 < p, q < \infty$.

Fix $\varepsilon > 0$ and $(x,y) \in S_{\ell_p} \times S_{\ell_q}$. Consider $\eta(\varepsilon, x \otimes y) > 0$. Let $A \in \mathcal{L}(\ell_p, \ell_q; \mathbb{K})$ with ||A|| = 1 with

$$|A(x,y)| > 1 - \eta(\varepsilon, x \otimes y).$$

Consider $\hat{A} \in S_{(\ell_p \hat{\otimes}_{\pi} \ell_q)^*}$. Then,

$$|\hat{A}(x \otimes y)| = |A(x,y)| > 1 - \eta(\varepsilon, x \otimes y).$$

Then, there is $\hat{B} \in S_{(\ell_p \hat{\otimes}_{\pi} \ell_q)^*}$ with

$$|B(x,y)| = |\hat{B}(x \otimes y)| = 1$$
 and $||B - A|| = ||\hat{B} - \hat{A}|| < \varepsilon$.

As a consequence...

(a). If $2 < p, q < \infty$, then $\ell_p \hat{\otimes}_{\pi} \ell_q$ is SSD.

As a consequence...

- (a). If $2 < p, q < \infty$, then $\ell_p \hat{\otimes}_{\pi} \ell_q$ is SSD.
- (b). If $2 < p, q < \infty$, then $(\ell_p, \ell_q; \mathbb{K})$ has property \star .

As a consequence...

- (a). If $2 < p, q < \infty$, then $\ell_p \hat{\otimes}_{\pi} \ell_q$ is SSD.
- (b). If $2 < p, q < \infty$, then $(\ell_p, \ell_q; \mathbb{K})$ has property \star .
- (c). If $p^{-1}+q^{-1}\geq 1$ or one of them is 1 or ∞ , then $\ell_p\hat{\otimes}_\pi\ell_q$ is **not** SSD.

(1) (X, Y) has property $\star \Longrightarrow$

(1) (X, Y) has property $\star \Longrightarrow$ given $\varepsilon > 0$ and $x \in S_X$,

(1) (X, Y) has property $\star \Longrightarrow$ given $\varepsilon > 0$ and $x \in S_X$, there is $\eta(\varepsilon, x) > 0$

(1) (X, Y) has property $\star \Longrightarrow$ given $\varepsilon > 0$ and $x \in S_X$, there is $\eta(\varepsilon, x) > 0$ such that whenever $T \in \mathcal{L}(X, Y)$ with ||T|| = 1 satisfies

$$||T(x)|| > 1 - \eta(\varepsilon, x),$$

(1) (X, Y) has property $\star \Longrightarrow$ given $\varepsilon > 0$ and $x \in S_X$, there is $\eta(\varepsilon, x) > 0$ such that whenever $T \in \mathcal{L}(X, Y)$ with ||T|| = 1 satisfies

$$||T(x)|| > 1 - \eta(\varepsilon, x),$$

there are $S \in \mathcal{L}(X, Y)$ with ||S|| = 1

(1) (X, Y) has property $\star \Longrightarrow$ given $\varepsilon > 0$ and $x \in S_X$, there is $\eta(\varepsilon, x) > 0$ such that whenever $T \in \mathcal{L}(X, Y)$ with ||T|| = 1 satisfies

$$||T(x)|| > 1 - \eta(\varepsilon, x),$$

there are $S \in \mathcal{L}(X, Y)$ with ||S|| = 1 and $x_0 \in S_X$ such that

(1) (X, Y) has property $\star \Longrightarrow$ given $\varepsilon > 0$ and $x \in S_X$, there is $\eta(\varepsilon, x) > 0$ such that whenever $T \in \mathcal{L}(X, Y)$ with ||T|| = 1 satisfies

$$||T(x)|| > 1 - \eta(\varepsilon, x),$$

there are $S \in \mathcal{L}(X, Y)$ with ||S|| = 1 and $x_0 \in S_X$ such that

$$||S(x_0)|| = 1$$
, $x_0 \approx x$, and $S \approx T$.

(1) (X, Y) has property $\star \Longrightarrow$ given $\varepsilon > 0$ and $x \in S_X$, there is $\eta(\varepsilon, x) > 0$ such that whenever $T \in \mathcal{L}(X, Y)$ with ||T|| = 1 satisfies

$$||T(x)|| > 1 - \eta(\varepsilon, x),$$

there are $S \in \mathcal{L}(X, Y)$ with ||S|| = 1 and $x_0 \in S_X$ such that

$$||S(x_0)|| = 1$$
, $x_0 \approx x$, and $S \approx T$.

$$\implies \overline{NA(X,Y)} = \mathcal{L}(X,Y)$$
?

(1) (X, Y) has property $\star \Longrightarrow$ given $\varepsilon > 0$ and $x \in S_X$, there is $\eta(\varepsilon, x) > 0$ such that whenever $T \in \mathcal{L}(X, Y)$ with ||T|| = 1 satisfies

$$||T(x)|| > 1 - \eta(\varepsilon, x),$$

there are $S \in \mathcal{L}(X, Y)$ with ||S|| = 1 and $x_0 \in S_X$ such that

$$||S(x_0)|| = 1$$
, $x_0 \approx x$, and $S \approx T$.

$$\implies \overline{NA(X,Y)} = \mathcal{L}(X,Y)$$
?

(2) \exists more Banach spaces X and Y such that $X \hat{\otimes}_{\pi} Y$ is SSD?

Thank you for your attention