Some open problems on sequential properties of dual Banach spaces

V Congreso de Jóvenes Investigadores de la RSME

Análisis Funcional

Gonzalo Martínez Cervantes

University of Murcia, Spain

January 28th, 2020

Let K be a Hausdorff compact space.

• K is said to be **sequentially compact** if every sequence in K contains a convergent subsequence.

- K is said to be sequentially compact if every sequence in K contains a convergent subsequence.
- K is Fréchet-Urysohn (FU for short) if for every subspace F of K, every point in the closure of F is the limit of a sequence in F.

- K is said to be sequentially compact if every sequence in K contains a convergent subsequence.
- K is Fréchet-Urysohn (FU for short) if for every subspace F of K, every point in the closure of F is the limit of a sequence in F.
- K is said to be sequential if any sequentially closed subspace is closed.

- K is said to be **sequentially compact** if every sequence in K contains a convergent subsequence.
- K is **Fréchet-Urysohn** (FU for short) if for every subspace F of K, every point in the closure of F is the limit of a sequence in F.
- K is said to be sequential if any sequentially closed subspace is closed.
- K is said to have countable tightness if for every subspace F of K, every point in the closure of F is in the closure of a countable subspace of F.

K is FU

K is $FU \Longrightarrow K$ is sequential

K is $FU \Longrightarrow K$ is sequential $\Longrightarrow K$ is sequentially compact

K is FU $\Longrightarrow K$ is sequential $\Longrightarrow K$ is sequentially compact \Downarrow K has countable tightness

K is FU $\Longrightarrow K$ is sequential $\Longrightarrow K$ is sequentially compact \Downarrow K has countable tightness

Definition

A Banach space with weak*-FU dual ball is said to have weak*-angelic dual.

X has weak*angelic dual

X has weak*angelic dual

X has weak*sequential dual ball

X has weak*sequential dual ball

X has weak*sequentially compact dual ball

X has weak*sequential dual ball

 (B_{X^*}, w^*) has countable tigthness

Let X be a Banach space.

• X is said to have **property** (\mathcal{E}) (of Efremov) if every point in the weak*-closure of any convex subset $C \subset B_{X^*}$ is the weak*-limit of a sequence in C.

Let X be a Banach space.

- X is said to have **property** (\mathcal{E}) (of Efremov) if every point in the weak*-closure of any convex subset $C \subset B_{X^*}$ is the weak*-limit of a sequence in C.
- X is said to have **property** (\mathcal{E}') if every weak*-sequentially closed convex set in the dual ball is weak*-closed.

Let X be a Banach space.

- X is said to have **property** (\mathcal{E}) (of Efremov) if every point in the weak*-closure of any convex subset $C \subset B_{X^*}$ is the weak*-limit of a sequence in C.
- X is said to have **property** (\mathcal{E}') if every weak*-sequentially closed convex set in the dual ball is weak*-closed.
- X has **property (C)** of Corson if and only if every point in the closure of C is in the weak*-closure of a countable subset of C for every convex set C in B_{X^*} (Pol's characterization).

X has weak*-sequential dual ball

 (B_{X^*}, w^*) has countable tigthness

X has weak*sequential dual ball

 (B_{X^*}, w^*) has countable tigthness

Does every Banach space with weak*-sequential dual ball have weak*-angelic dual?

Does every Banach space with weak*-sequential dual ball have weak*-angelic dual?

Theorem (G.M.C., 2018)

If X is a Banach space with weak*-sequentially compact dual ball and $Y \subseteq X$ is a subspace such that Y and X/Y have weak*-sequential dual ball, then X has weak*-sequential dual ball.

Does every Banach space with weak*-sequential dual ball have weak*-angelic dual?

Theorem (G.M.C., 2018)

If X is a Banach space with weak*-sequentially compact dual ball and $Y \subseteq X$ is a subspace such that Y and X/Y have weak*-sequential dual ball, then X has weak*-sequential dual ball.

Open Problem

Is having weak*-sequential dual ball a three-space property?

Does every Banach space with weak*-sequential dual ball have weak*-angelic dual?

Theorem (G.M.C., 2018)

If X is a Banach space with weak*-sequentially compact dual ball and $Y \subseteq X$ is a subspace such that Y and X/Y have weak*-sequential dual ball, then X has weak*-sequential dual ball.

Open Problem

Is having weak*-sequential dual ball a three-space property? Is property (\mathcal{E}') a three-space property?

Let $\mathcal{F} = \{N_r : r \in \Gamma\}$ be a maximal almost disjoint (MAD) family in \mathbb{N} .

$$\left\| x + \sum_{1 \le i \le k} a_i \chi_{N_{r_i}} \right\| = \max \left\{ \left\| x + \sum_{1 \le i \le k} a_i \chi_{N_{r_i}} \right\|_{\infty}, \left(\sum_{1 \le i \le k} |a_i|^2 \right)^{\frac{1}{2}} \right\}.$$

$$\left\|x + \sum_{1 \le i \le k} a_i \chi_{N_{r_i}}\right\| = \max\left\{\left\|x + \sum_{1 \le i \le k} a_i \chi_{N_{r_i}}\right\|_{\infty}, \left(\sum_{1 \le i \le k} |a_i|^2\right)^{\frac{1}{2}}\right\}.$$

$$\left\|x + \sum_{1 \le i \le k} a_i \chi_{N_{r_i}} \right\| = \max\left\{ \left\|x + \sum_{1 \le i \le k} a_i \chi_{N_{r_i}} \right\|_{\infty}, \left(\sum_{1 \le i \le k} |a_i|^2\right)^{\frac{1}{2}} \right\}.$$

If we just consider the supremum norm in the definition then we obtain the space JL_0 .

• JL_2 is a twisted sum of c_0 and $\ell_2(\Gamma)$;

$$\left\|x + \sum_{1 \le i \le k} a_i \chi_{N_{r_i}} \right\| = \max\left\{ \left\|x + \sum_{1 \le i \le k} a_i \chi_{N_{r_i}} \right\|_{\infty}, \left(\sum_{1 \le i \le k} |a_i|^2\right)^{\frac{1}{2}} \right\}.$$

- JL_2 is a twisted sum of c_0 and $\ell_2(\Gamma)$;
- ② JL₂ has weak*-sequentially compact dual ball.

$$\left\|x + \sum_{1 \leq i \leq k} a_i \chi_{N_{r_i}}\right\| = \max\left\{\left\|x + \sum_{1 \leq i \leq k} a_i \chi_{N_{r_i}}\right\|_{\infty}, \left(\sum_{1 \leq i \leq k} |a_i|^2\right)^{\frac{1}{2}}\right\}.$$

- JL_2 is a twisted sum of c_0 and $\ell_2(\Gamma)$;
- JL₂ has weak*-sequentially compact dual ball. Thus, JL₂ has weak*-sequential dual ball;

$$\left\|x + \sum_{1 \leq i \leq k} a_i \chi_{N_{r_i}} \right\| = \max\left\{ \left\|x + \sum_{1 \leq i \leq k} a_i \chi_{N_{r_i}} \right\|_{\infty}, \left(\sum_{1 \leq i \leq k} |a_i|^2\right)^{\frac{1}{2}} \right\}.$$

- JL_2 is a twisted sum of c_0 and $\ell_2(\Gamma)$;
- ② JL₂ has weak*-sequentially compact dual ball. Thus, JL₂ has weak*-sequential dual ball;
- $JL_2^* = \ell_1 \oplus \ell_2(\Gamma);$

$$\left\|x + \sum_{1 \leq i \leq k} a_i \chi_{N_{r_i}} \right\| = \max\left\{ \left\|x + \sum_{1 \leq i \leq k} a_i \chi_{N_{r_i}} \right\|_{\infty}, \left(\sum_{1 \leq i \leq k} |a_i|^2\right)^{\frac{1}{2}} \right\}.$$

- JL_2 is a twisted sum of c_0 and $\ell_2(\Gamma)$;
- ② JL₂ has weak*-sequentially compact dual ball. Thus, JL₂ has weak*-sequential dual ball;
- $3 JL_2^* = \ell_1 \oplus \ell_2(\Gamma);$
- If $S_0=\{e_n\}_{n\in\mathbb{N}}$ is the canonical basis of ℓ_1 in JL_2^* , then the sequential closure of S_0 is $S_1=S_0\cup\{e_\alpha\}_{\alpha\in\Gamma}$

$$\left\|x+\sum_{1\leq i\leq k}a_i\chi_{N_{r_i}}\right\|=\max\bigg\{\left\|x+\sum_{1\leq i\leq k}a_i\chi_{N_{r_i}}\right\|_{\infty},\left(\sum_{1\leq i\leq k}|a_i|^2\right)^{\frac{1}{2}}\bigg\}.$$

If we just consider the supremum norm in the definition then we obtain the space JL_0 .

- **1** JL_2 is a twisted sum of c_0 and $\ell_2(\Gamma)$;
- 2 JL_2 has weak*-sequentially compact dual ball. Thus, JL_2 has weak*-sequential dual ball;
- If $S_0 = \{e_n\}_{n \in \mathbb{N}}$ is the canonical basis of ℓ_1 in JL_2^* , then the sequential closure of S_0 is $S_1 = S_0 \cup \{e_\alpha\}_{\alpha \in \Gamma}$ and the sequential closure of S_1 is

$$S_2 = S_1 \cup \{0\} = \overline{S_0}^{w^*}.$$

In particular, JL_2 does not have weak*-angelic dual.

Does property (C) of Corson imply property (\mathcal{E})?

Does property (C) of Corson imply property (\mathcal{E})? Does Johnson-Lindestrauss space JL_2 have property (\mathcal{E})?

Does property (C) of Corson imply property (E)? Does Johnson-Lindestrauss space JL_2 have property (E)?

J. Moore and C. Brech provided consistent examples of Banach spaces with property (C) but without property (\mathcal{E}) .

Does property (C) of Corson imply property (E)? Does Johnson-Lindestrauss space JL_2 have property (E)?

J. Moore and C. Brech provided consistent examples of Banach spaces with property (C) but without property (\mathcal{E}). Indeed, these examples do not have property (\mathcal{E}').

Does property (C) of Corson imply property (\mathcal{E})? Does Johnson-Lindestrauss space JL_2 have property (\mathcal{E})?

J. Moore and C. Brech provided consistent examples of Banach spaces with property (C) but without property (\mathcal{E}). Indeed, these examples do not have property (\mathcal{E}').

Theorem (A. Avilés, G.M.C., J. Rodríguez, 2019)

Under CH, there exists a MAD family \mathcal{F}^- for which the corresponding Johnson-Lindestrauss JL₂ does not have property (\mathcal{E}) .

Does property (C) of Corson imply property (\mathcal{E})? Does Johnson-Lindestrauss space JL_2 have property (\mathcal{E})?

J. Moore and C. Brech provided consistent examples of Banach spaces with property (C) but without property (\mathcal{E}). Indeed, these examples do not have property (\mathcal{E}').

Theorem (A. Avilés, G.M.C., J. Rodríguez, 2019)

Under CH, there exists a MAD family \mathcal{F}^- for which the corresponding Johnson-Lindestrauss JL_2 does not have property (\mathcal{E}) .

Under CH, there exists a MAD family \mathcal{F}^+ for which the corresponding Johnson-Lindestrauss JL₂ has property (\mathcal{E}) .

 $JL_2(\mathcal{F}^+)$ has the following property: every bounded sequence $(x_n^*)_{n\in\mathbb{N}}$ for which 0 is a weak*-cluster point has a subsequence $(x_{n_k}^*)_{k\in\mathbb{N}}$ such that $\lim_k \frac{1}{k} (x_{n_1}^* + \ldots + x_{n_k}^*) = 0$.

 $JL_2(\mathcal{F}^+)$ has the following property: every bounded sequence $(x_n^*)_{n\in\mathbb{N}}$ for which 0 is a weak*-cluster point has a subsequence $(x_{n_k}^*)_{k\in\mathbb{N}}$ such that $\lim_k \frac{1}{k}(x_{n_1}^*+\ldots+x_{n_k}^*)=0$. This condition guarantees that $JL_2(\mathcal{F}^+)$ has property (\mathcal{E}) .

 $JL_2(\mathcal{F}^+)$ has the following property: every bounded sequence $(x_n^*)_{n\in\mathbb{N}}$ for which 0 is a weak*-cluster point has a subsequence $(x_{n_k}^*)_{k\in\mathbb{N}}$ such that $\lim_k \frac{1}{k}(x_{n_1}^*+\ldots+x_{n_k}^*)=0$. This condition guarantees that $JL_2(\mathcal{F}^+)$ has property (\mathcal{E}) . The family \mathcal{F}^+ is the union of an increasing sequence of countable almost disjoint families $(\mathcal{F}_\alpha)_{\alpha<\omega_1}$ which is constructed by induction.

 $JL_2(\mathcal{F}^+)$ has the following property: every bounded sequence $(x_n^*)_{n\in\mathbb{N}}$ for which 0 is a weak*-cluster point has a subsequence $(x_{n_k}^*)_{k\in\mathbb{N}}$ such that $\lim_k \frac{1}{k}(x_{n_1}^*+\ldots+x_{n_k}^*)=0$. This condition guarantees that $JL_2(\mathcal{F}^+)$ has property (\mathcal{E}) . The family \mathcal{F}^+ is the union of an increasing sequence of countable almost disjoint families $(\mathcal{F}_\alpha)_{\alpha<\omega_1}$ which is constructed by induction. At step α we have a countable almost disjoint family \mathcal{F}_α , a countable family \mathcal{S}_α of sequences whose arithmetic-means converge to zero in $JL_2(\mathcal{F}_\alpha)^*$ and a sequence $(x_n^*)_{n\in\mathbb{N}}$ having zero as a weak*-cluster point in $JL_2(\mathcal{F}_\alpha)^*$.

 $JL_2(\mathcal{F}^+)$ has the following property: every bounded sequence $(x_n^*)_{n\in\mathbb{N}}$ for which 0 is a weak*-cluster point has a subsequence $(x_{n_k}^*)_{k\in\mathbb{N}}$ such that $\lim_k \frac{1}{k} (x_{n_1}^* + \ldots + x_{n_k}^*) = 0$. This condition guarantees that $JL_2(\mathcal{F}^+)$ has property (\mathcal{E}) . The family \mathcal{F}^+ is the union of an increasing sequence of countable almost disjoint families $(\mathcal{F}_{\alpha})_{\alpha<\omega_1}$ which is constructed by induction. At step α we have a countable almost disjoint family \mathcal{F}_{α} , a countable family S_{α} of sequences whose arithmetic-means converge to zero in $JL_2(\mathcal{F}_{\alpha})^*$ and a sequence $(x_n^*)_{n\in\mathbb{N}}$ having zero as a weak*-cluster point in $JL_2(\mathcal{F}_{\alpha})^*$. Passing to a suitable subsequence $(x_{n_k}^*)_{k\in\mathbb{N}}$ we can find an infinite set $N \subseteq \mathbb{N}$ such that:

1 $\mathcal{F}_{\alpha+1} = \mathcal{F}_{\alpha} \cup \{N\}$ is an almost disjoint family;

 $JL_2(\mathcal{F}^+)$ has the following property: every bounded sequence $(x_n^*)_{n\in\mathbb{N}}$ for which 0 is a weak*-cluster point has a subsequence $(x_{n_k}^*)_{k\in\mathbb{N}}$ such that $\lim_k \frac{1}{k}(x_{n_1}^*+\ldots+x_{n_k}^*)=0$. This condition guarantees that $JL_2(\mathcal{F}^+)$ has property (\mathcal{E}) . The family \mathcal{F}^+ is the union of an increasing sequence of countable almost disjoint families $(\mathcal{F}_\alpha)_{\alpha<\omega_1}$ which is constructed by induction. At step α we have a countable almost disjoint family \mathcal{F}_α , a countable family \mathcal{S}_α of sequences whose arithmetic-means converge to zero in $JL_2(\mathcal{F}_\alpha)^*$ and a sequence $(x_n^*)_{n\in\mathbb{N}}$ having zero as a weak*-cluster point in $JL_2(\mathcal{F}_\alpha)^*$. Passing to a suitable subsequence $(x_{n_k}^*)_{k\in\mathbb{N}}$ we can find an infinite set $N\subseteq\mathbb{N}$ such that:

- $\mathcal{F}_{\alpha+1} = \mathcal{F}_{\alpha} \cup \{N\}$ is an almost disjoint family;
- ② $\lim_k \frac{1}{k} (x_{n_1}^* + \ldots + x_{n_k}^*)(\chi_N) = 0;$

 $JL_2(\mathcal{F}^+)$ has the following property: every bounded sequence $(x_n^*)_{n\in\mathbb{N}}$ for which 0 is a weak*-cluster point has a subsequence $(x_{n_k}^*)_{k\in\mathbb{N}}$ such that $\lim_k \frac{1}{k} (x_{n_1}^* + \ldots + x_{n_k}^*) = 0$. This condition guarantees that $JL_2(\mathcal{F}^+)$ has property (\mathcal{E}) . The family \mathcal{F}^+ is the union of an increasing sequence of countable almost disjoint families $(\mathcal{F}_{\alpha})_{\alpha<\omega_1}$ which is constructed by induction. At step α we have a countable almost disjoint family \mathcal{F}_{α} , a countable family S_{α} of sequences whose arithmetic-means converge to zero in $JL_2(\mathcal{F}_{\alpha})^*$ and a sequence $(x_n^*)_{n\in\mathbb{N}}$ having zero as a weak*-cluster point in $JL_2(\mathcal{F}_\alpha)^*$. Passing to a suitable subsequence $(x_{n_k}^*)_{k\in\mathbb{N}}$ we can find an infinite set $N \subseteq \mathbb{N}$ such that:

- $\mathcal{F}_{\alpha+1} = \mathcal{F}_{\alpha} \cup \{N\}$ is an almost disjoint family;
- lim $_k \frac{1}{k} (y_1^* + \ldots + y_k^*)(\chi_N) = 0$ for every sequence $(y_k^*)_{k \in \mathbb{N}}$ in \mathcal{S}_{α} .

 $JL_2(\mathcal{F}^+)$ has the following property: every bounded sequence $(x_n^*)_{n\in\mathbb{N}}$ for which 0 is a weak*-cluster point has a subsequence $(x_{n_k}^*)_{k\in\mathbb{N}}$ such that $\lim_k \frac{1}{k} (x_{n_1}^* + \ldots + x_{n_k}^*) = 0$. This condition guarantees that $JL_2(\mathcal{F}^+)$ has property (\mathcal{E}) . The family \mathcal{F}^+ is the union of an increasing sequence of countable almost disjoint families $(\mathcal{F}_{\alpha})_{\alpha<\omega_1}$ which is constructed by induction. At step α we have a countable almost disjoint family \mathcal{F}_{α} , a countable family \mathcal{S}_{lpha} of sequences whose arithmetic-means converge to zero in $JL_2(\mathcal{F}_{\alpha})^*$ and a sequence $(x_n^*)_{n\in\mathbb{N}}$ having zero as a weak*-cluster point in $JL_2(\mathcal{F}_{\alpha})^*$. Passing to a suitable subsequence $(x_{n_k}^*)_{k\in\mathbb{N}}$ we can find an infinite set $N \subseteq \mathbb{N}$ such that:

- **1** $\mathcal{F}_{\alpha+1} = \mathcal{F}_{\alpha} \cup \{N\}$ is an almost disjoint family;
- lim $_k \frac{1}{k} (y_1^* + \ldots + y_k^*)(\chi_N) = 0$ for every sequence $(y_k^*)_{k \in \mathbb{N}}$ in \mathcal{S}_{α} .

Then take $S_{\alpha+1} = S_{\alpha} \cup \{(x_{n_{\nu}}^*)_{k \in \mathbb{N}}\}$ and $F_{\alpha+1} = F_{\alpha} \cup \{N\}$.

 $JL_2(\mathcal{F}^+)$ has the following property: every bounded sequence $(x_n^*)_{n\in\mathbb{N}}$ for which 0 is a weak*-cluster point has a subsequence $(x_{n_k}^*)_{k\in\mathbb{N}}$ such that $\lim_k \frac{1}{k} (x_{n_1}^* + \ldots + x_{n_k}^*) = 0$. This condition guarantees that $JL_2(\mathcal{F}^+)$ has property (\mathcal{E}) . The family \mathcal{F}^+ is the union of an increasing sequence of countable almost disjoint families $(\mathcal{F}_{\alpha})_{\alpha<\omega_1}$ which is constructed by induction. At step α we have a countable almost disjoint family \mathcal{F}_{α} , a countable family S_{α} of sequences whose arithmetic-means converge to zero in $JL_2(\mathcal{F}_{\alpha})^*$ and a sequence $(x_n^*)_{n\in\mathbb{N}}$ having zero as a weak*-cluster point in $JL_2(\mathcal{F}_{\alpha})^*$. Passing to a suitable subsequence $(x_{n_k}^*)_{k\in\mathbb{N}}$ we can find an infinite set $N \subseteq \mathbb{N}$ such that:

- $\mathcal{F}_{\alpha+1} = \mathcal{F}_{\alpha} \cup \{N\}$ is an almost disjoint family;

Then take $\mathcal{S}_{\alpha+1} = \mathcal{S}_{\alpha} \cup \{(x_{n_k}^*)_{k \in \mathbb{N}}\}$ and $\mathcal{F}_{\alpha+1} = \mathcal{F}_{\alpha} \cup \{N\}$. Under CH, every sequence having zero as a weak*-cluster point is considered at some step $\alpha < \omega_1$ and therefore $JL_2(\mathcal{F}^+)$ has property (\mathcal{E}) .

Recall that $JL_2(\mathcal{F})^* = \ell_1 \oplus \ell_2(\mathcal{F}).$

Recall that $JL_2(\mathcal{F})^* = \ell_1 \oplus \ell_2(\mathcal{F})$. \mathcal{F}^- is constructed in such a way that $co(\{e_n^* : n \in \mathbb{N}\})$ does not contain weak*-null sequences in $JL_2(\mathcal{F}^-)$.

Recall that $JL_2(\mathcal{F})^* = \ell_1 \oplus \ell_2(\mathcal{F})$. \mathcal{F}^- is constructed in such a way that $\operatorname{co}(\{e_n^*:n\in\mathbb{N}\})$ does not contain weak*-null sequences in $JL_2(\mathcal{F}^-)$. \mathcal{F}^- is again obtained as the union of an increasing sequence of countable almost disjoint families $(\mathcal{F}_{\alpha})_{\alpha<\omega_1}$.

Recall that $JL_2(\mathcal{F})^* = \ell_1 \oplus \ell_2(\mathcal{F})$. \mathcal{F}^- is constructed in such a way that $\operatorname{co}(\{e_n^*:n\in\mathbb{N}\})$ does not contain weak*-null sequences in $JL_2(\mathcal{F}^-)$. \mathcal{F}^- is again obtained as the union of an increasing sequence of countable almost disjoint families $(\mathcal{F}_{\alpha})_{\alpha<\omega_1}$.

At each step α we consider a weak*-null sequence $(x_n^*)_{n\in\mathbb{N}}\in\operatorname{co}(\{e_n^*:n\in\mathbb{N}\})\subset JL_2(\mathcal{F}_\alpha)^*$ and we *kill* it by finding a set $N\in\mathbb{N}$ such that

① $\limsup_{k} x_{n}^{*}(\chi_{N}) > 0;$

Recall that $JL_2(\mathcal{F})^* = \ell_1 \oplus \ell_2(\mathcal{F})$. \mathcal{F}^- is constructed in such a way that $\operatorname{co}(\{e_n^*:n\in\mathbb{N}\})$ does not contain weak*-null sequences in $JL_2(\mathcal{F}^-)$. \mathcal{F}^- is again obtained as the union of an increasing sequence of countable almost disjoint families $(\mathcal{F}_{\alpha})_{\alpha<\omega_1}$.

At each step α we consider a weak*-null sequence $(x_n^*)_{n\in\mathbb{N}}\in\operatorname{co}(\{e_n^*:n\in\mathbb{N}\})\subset JL_2(\mathcal{F}_\alpha)^*$ and we *kill* it by finding a set $N\in\mathbb{N}$ such that

- ① $\limsup_{k} x_{n}^{*}(\chi_{N}) > 0;$
- ② $\mathcal{F}_{\alpha+1} = \mathcal{F}_{\alpha} \cup \{N\}$ is an almost disjoint family.

Recall that $JL_2(\mathcal{F})^* = \ell_1 \oplus \ell_2(\mathcal{F})$. \mathcal{F}^- is constructed in such a way that $\operatorname{co}(\{e_n^*:n\in\mathbb{N}\})$ does not contain weak*-null sequences in $JL_2(\mathcal{F}^-)$. \mathcal{F}^- is again obtained as the union of an increasing sequence of countable almost disjoint families $(\mathcal{F}_{\alpha})_{\alpha<\omega_1}$.

At each step α we consider a weak*-null sequence $(x_n^*)_{n\in\mathbb{N}}\in\operatorname{co}(\{e_n^*:n\in\mathbb{N}\})\subset JL_2(\mathcal{F}_\alpha)^*$ and we *kill* it by finding a set $N\in\mathbb{N}$ such that

- ① $\limsup_{k} x_{n}^{*}(\chi_{N}) > 0;$
- ② $\mathcal{F}_{\alpha+1} = \mathcal{F}_{\alpha} \cup \{N\}$ is an almost disjoint family.

Under CH, after ω_1 steps no weak*-null sequence in $\operatorname{co}(\{e_n^*:n\in\mathbb{N}\})$ survives.

Open Problem

Can \mathcal{F}^+ or \mathcal{F}^- be constructed in ZFC without any extra set-theoretic assumption?

References

A. Avilés, G. Martínez-Cervantes, J. Rodríguez

Weak*-sequential properties of Johnson-Lindenstrauss spaces.

J. Funct. Anal. 276 (2019), 3051-3066.

W.B. Johnson, J. Lindenstrauss,

Some remarks on weakly compactly generated Banach spaces.

Israel J. Math., 17 (1974), 219–230.

 $G.\ Mart \'in ez-Cervantes,$

Banach spaces with weak*-sequential dual ball.

Proc. Amer. Math. Soc. 146 (4) (2018), 1825-1832.

A. Plichko,

Three sequential properties of dual Banach spaces in the weak* topology.

Top. Appl., 190 (2015), 93-98.

A. Plichko, D. Yost

Complemented and uncomplemented subspaces of Banach spaces.

Ext. Math. 15 (2000), 335–371, III Congress on Banach Spaces (Jarandilla de la Vera, 1998).