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MAIN AIMS

e To obtain an extension of Bolzano-Poincaré-Miranda theorem to
infinite dimensional Banach spaces.

e To establish a result regarding the existence of periodic solutions
to differential equations posed in an arbitrary Banach space.

¢ To prove an equivalence between our main result and Schauder
and Brouwer theorems.



INTRODUCTION

x is a zero of a mapping f : U — Bif f(x) =

Theorem 1 (Bolzano’s theorem)

Iff : [a,b] — R is a continuous function and f(a) f(b) < 0, then there
exists a point x € (a,b) such that f(x) = 0.
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Proof. (Bolzano in 1817 and Cauchy in 1821).
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Theorem 2 (Poincaré-Miranda’s theorem)

Let P := {x eR": |xj| < Lforalll <i< n}. Suppose that
F=(f, - .fu) : P> R"isa continuous mapping on P such that

(@) fi(x1,-++ ,xic1,—L,xit1,- ,x,) >0for1 <i<n,
() fi(x1, - ,xic1, L, Xig1,--- ,x,) <O0forl<i<mn
Then there exists at least one point x € P such that F(x) = 0.
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Proof. Poincaré (1883) without proof. The first proof by Miranda
(1940).



NOTATIONS AND PRELIMINARIES

(B, |-|l) a Banach space and B* := £(B, R) its dual space.

For C € B, C, 0C, int(C) and conv(C) the closure, the boundary,
the interior and the convex hull of C, respectively.

B,[x] and S,[x] the closed ball and the sphere of center x and
radius r, respectively.

the normalized duality mapping | at x, is defined as

Joo) = {jeB*: G,y = jx) = |xIP, lil = lx]}-



We introduce a class of functionals [-,-] : B x B — R satisfying:
(Cy) [x,x] > 0 for all x € B with x # 0.
(C2) [Ax,x] = A[x,x] forallx e Band A € R.

Example 1

| A

(1) If B is a pre-Hilbert space then [, -] is its inner-product.

(2) In general, if B is a Banach space, we may define [-,-] : B x B — R as
either

[yl = xy)+ = sup (xjly)y = max Cx,j(y)
j(w)el(y) jWEly)

or
x,y] =<{x,yy_ := inf (x,j = min {x,j(y)).
[x,y] = <x ]-(;)2,@5 i) j<y>é}€y>< iw)

In particular, if B is a smooth Banach space, then [-, -] can be given by

|Ixa l/]] = <xa](y)>




OUR MAIN RESULT

f: U< B — Bis completely continuous if f is continuous and f(C) is
relative compact for all C bounded subset of U.

Theorem 3

Let U be a bounded closed subset of a Banach space B with int(U) # &,
and [[,-] : B x B — R be a functional satisfying

(C1) [x,x] > 0 forall x e Bwithx # 0.
(Cy) [Ax,x] = A[x,x] forall x € Band X € R.

Iff - U — B is a completely continuous mapping and there exists
z € int(U) such that [f(x), x — z]| has constant sign for all x € U, then
0 € f(U). Moreover, if 0 ¢ of (U)\f(U), then 0 € f(U).




SOME CONSEQUENCES

Let B be a Banach space with [-,-] : B x B — R a functional satisfying (Cy)
and (Cy), and z € X. If f : B,[z] — B is a completely continuous mapping

such that [f (x),x — z] has constant sign for all x € S,(z), then 0 € f(B,[z]).
Moreover, if B is reflexive and f is weak-strong continuous on B,[z], then

0 ¢ f(B,[2]).

Let U be a nonempty bounded and closed subset of a Banach space B with
int(U) # &. If f : U — B is a completely continuous mapping and there
exists z € int(U) such that either f(x) ¢ {\(x —z) : A <0} forallx e oU
orf(x) ¢ {\x—2z): A>0}forall xe oU, then 0 € f(U).




Remark

As a consequence of the previous result, we obtain

o Proposition 4 in Alefeld, Frommer, Heindl, Mayer, On the existence
theorems of Kantorovich, Miranda and Borsuk, (2004).

e Theorem 1in C.H. Morales, A Bolzano’s theorem in the new
millennium, (2002).

o Corollary 3 in Isac, Some solvability theorems for nonlinear equations
with applications to projected dynamical systems, (2009).

o A generalization of Poincaré-Bohl’s theorem given in Fonda, Gidoni,
Generalizing the Poincaré-Miranda Theorem: The avoiding cones
condition, (2016).




CONSEQUENCES IN FINITE DIMENSIONAL SPACES

A subset D c R" is said to be a convex body if it is a compact convex
set with nonempty interior.

Given a point x € 0D, we define the normal cone to int(D) in x as
Np(x) :={veR": {v,y —x) <0, for every y € int(D)}

where (-, -) denotes the Euclidean scalar product in R".

Let D be a convex body in R" endowed with an arbitrary norm || - ||. Let
f: D — R" be a continuous function and assume that for all x € 0D there
exists a(x) € Np(x) such that {f(x),a(x)) = O, then f has a zero in D.




CONSEQUENCES IN FINITE DIMENSIONAL SPACES

Proof of Bolzano’s Theorem
B=Rwith|-|=]-]
Taking z = ”+b and r = b £, we have B,[z] = [a,b] and S,(z) = {a, b}.

|

We define [x,y] = xy.

The hypothesis f(a)f (b) < 0, implies that [f(x),x — z] = f(x)(x — z)
has a constant sign for all x € S,(z).

Since (R, |-|) is finite dimensional Banach space, we may apply
Corollary 1 to obtain the result.




CONSEQUENCES IN FINITE DIMENSIONAL SPACES

P:={xeR": |xj <Lforalll <i<n}
is a convex body in R" and
0P ={xeP: x; = +L for some 1 <i < n}.
Ifxe 0P, thenx = (xq, -+ ,xi_1, L, Xi 1, ,X,)-
In this case, we take a(x) = (0,...,0,+L.0,...,0) € Np(x).

Consider the function g := —f. Bearing in mind conditions (a) and (b),
we obtain that

<g(x),‘1(x» = _fi(xl’ s, X1, iLv Xit1, " »xn)(iL) > 0.

The above argument says that every conditions in Corollary 3 is
satisfied, which allows us to obtain the result. O
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CONSEQUENCES IN INFINITE DIMENSIONAL SPACES

We can use our theorem in order to get several results in infinite
dimensional spaces.

o




AN APPLICATION TO SYSTEMS OF NONLINEAR
EQUATIONS

Let L be a linear homeomorphism from (R", ||-|) into itself such that

¢ :=min { |L(x)| : [x| =1} > 0. Let g : R" — R" be a continuous
mapping. If there exists R > 0 such that |g(x)|| < ¢R for all x € Br[0], then
the nonlinear equation L(x) + g(x) = 0 has at least one solution in Bg[0].




AN APPLICATION TO SYSTEMS OF NONLINEAR
EQUATIONS

Theorem 4

Let L be a linear homeomorphism from (R", ||-||) into itself such that

¢ :=min { |L(x)| : [x| =1} > 0. Let g : R" — R" be a continuous
mapping. If there exists R > 0 such that |g(x)|| < ¢R for all x € Br[0], then
the nonlinear equation L(x) + g(x) = 0 has at least one solution in Bg[0].

Corollary 4

Let L be a linear homeomorphism from (R", |-|) into itself such that

¢ :=min { |L(x)| : [x| =1} > 0. Let g : R" — R" be a continuous
mapping. If there exist o, 8 = 0, with o < ¢, such that ||g(x)| < « |x|| + 8
for all x € R", then the nonlinear equation L(x) + g(x) = 0 has at least one
solution in the ball Br[0] where R = /(¢ — «).




AN APPLICATION TO SYSTEMS OF NONLINEAR

EQUATIONS

Example 2

The system of the nonlinear equations

. —2x + 7y + 4y cos(5x + 3y) =3
7x — 2y — 3x sin(2x — 5y) = 2

has at least a solution in [—3,3] x [—3, 3].
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AN APPLICATION TO DIFFERENTIAL EQUATIONS

We can use our result in order to prove the existence of solutions for
the following second order differential equation:

u'(t) = f(t,u(t)) + h(t)

where B is a reflexive real Banach space, f : [4,b] x B —» Bisa
sequentially weak-strong continuous mapping and / : [2,b] — Bisa
continuous function on B.



AN APPLICATION TO DIFFERENTIAL EQUATIONS

Example 3

If hy,. .., hy : [a,b] — R are continuous functions with Ss hi(t)dt =0,
then the problem
t
(w1 i + (0

T 1t B[+ + (D)

. uy(t)
=T+ )

ui(a) = uq(b), ..., uy(a) = u,(b),
Lu:’l(a) = u;(b)7 0C .,u;,(a) = u;z(b)’

+ hy(t)

has at least a solution in C?([a, b], R").




AN APPLICATION TO DIFFERENTIAL EQUATIONS

r u](t) 3 A\\ 002
ul(t) = +t— 5¢t e .
0= T mm e TG L R
us(t) 3 v
ul(t) = +t—2t
20 = T30 + )]

ur(—=1) = u1(1), uy(=1) = uz(1),
(u1(=1) = uj(1),uy(=1) = u5(1),

—_— A

has at least a solution in C?([—1, 1], R?)




AN APPLICATION TO DIFFERENTIAL EQUATIONS

Example 4

Lethy, ..., hy, : [a,b] — R be continuous functions with S: hi(t)dt =0
and let 0 < o < 1. Then, the problem

[y 20 V03 + -+ (1)
u =
' 1+\/u§(t)+---+u,%(t)

+ Iy (¢)

gy = V@0 + -+ ()
1+ \/Lﬁ(t) + -+ ul(t)
() = w1 (b), ..., 14y(a) = (D),

Lull(a) = ull(b)a oo ,u;(a) = u:’l(b)’

has at least a solution in Czi |ai b i R" i

+ hy(t)




AN APPLICATION TO DIFFERENTIAL EQUATIONS

Example 5

Let €2 be an open convex and bounded subset of R” and consider
®,p : [a,b] x Q — R two functions. We can prove the existence of
solutions for the following partial differential equation:

S
; o2 (W(t’ x) — P(fvx)) = o(t,x)
\ b(a,x) — p(b, x) = a—(z)(a,x) - a—qb(b,x) =0,forallxe Q
ot ot
2
ZTZS(t,x) — p(t,x) = 0 forall (t,x) € (a,b) x K.




A FINAL REMARK

The following theorems are equivalent:
(a) Brouwer’s fixed point theorem.

(b) Schauder’s fixed point theorem.
(c) Theorem 3.
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